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ABSTRACT 
 
This paper deals with the steady-state solution of the queueing system: MX/Hk 

/1/N with reneging in which (i) units arrive in batches of random size with the 
interarrival times of batches following negative exponential distribution, (ii) the 
batches are served in order of their arrival; and (iii) the service time distribution is 
hyperexponential with k branches. Recurrence relations connecting the various 
probabilities introduced are found. Some measures of effectiveness are deduced and 
some special cases are also obtained. 
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DESCRIPTION OF THE SYSTEM 
 
Morse [4] discussed the steady-state queueing system in which the service 

channel consists of two branches, the units arrive singly and the capacity of the 
waiting space is infinite. Gupta and Goyal [1] studied a similar system by using the 
generating functions with k branches in the service channel, the units arrive singly 
and the capacity of the waiting space is finite. Habib [3] and Gupta and Goyal [2] 
treated the system MX/Hk/1. White et al. [6] solved the system: M/H2 /2/2 
numerically. All the previous studies are without balking and reneging. 

 In the present system, it is assumed that the units arrive at the system in 
batches of random size X, i. e., at each moment of arrival, there is a probability Cj = 
Pr (X= j) that j units arrive simultaneously, and the interarrival times of batches 
follow a negative exponential distribution with time independent parameter . Let 
 Cj t, (j = 1, 2,..., N), be the first order probability that a batches of j units comes in 
time t. The service channel is busy if a unit is present in any one of the k branches 
and in this case the arrival units form a queue and the capacity of the system is N. 

The unit at the head of the queue requires service in the rth branch with 

probability 𝜎𝑟 ,  𝜎𝑟 = 1𝑘
𝑟=1

*. The service time distribution in the rth branch is 

                                                             
* The variation of the subscripts i,j,r,s is from 1 to k, unless otherwise explicitly mentioned.   
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negative exponential with mean rate  r.The overall service-time distribution is of 
the form  

𝑆 𝑡 =  𝜎𝑟𝜇𝑟𝑒
−𝜇𝑟 𝑡 ,

𝑟

 

 

with mean  
𝜎𝑟

𝜇𝑟
.𝑟  

It is assumed that the units may renege according to an exponential 

distribution, f(t) =  et, t  0, with parameter . The probability of reneging in a 
short period of time t is given by rm = (m1)  t, for 1  m  N and rm= 0, for m 

= 0, 1. 
 
THE STEADY-STATE EQUATIONS AND THEIR SOLUTION 
 
Define Pm,s as the equilibrium probability that there are m units in the system 

and the unit in the service being in the sth branch,  
P0 as the equilibrium probability that there are no units in the system.  

Then, the steadystate probability difference equations are  
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where A(m, s) = s + (m1) , m = 1(1)N, s =1(1)k. 
Summing (2) over s and using (1), 
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Also, summing (3) over s and using (5), 
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 2 ≤ 𝑚 ≤ 𝑁 − 1.         (6) 
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From (2) and (5), 

,])1(),1([ 0,1,1 PPPrA r
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

     (7) 

which can be written in the matrix form as:  
 

𝐁𝟏𝐏𝟏 = 𝜆 P0  𝐒,         (8) 
 
Where 
 

𝐁𝟏 =  bij 1  , 

 
such that  
 

bij (m) = i, i  j, 

),1(),()( iii imAmb    

 𝐏𝐦
𝐓 = [𝑃m,1 , 𝑃m,2 , … , 𝑃m,k ], 1 ≤ 𝑚 ≤ 𝑁 − 1 

 
and 
 

ST = [𝜎1, 𝜎2 , … , 𝜎𝑘],   
 
where T denotes the transpose of a matrix. 
Now, the inverse matrix of 𝐁𝟏 is given by 
 

𝐁1
−1 =  b𝑖𝑗
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Using this value of 𝐁1

−1 
in (8), we have  
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Similarly, from (3) and (6) at m =2, 
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which can be written in the matrix form as  
 

𝐁𝟐𝐏𝟐 =
𝛌 𝐏𝟎

𝐷1
𝐀, (11) 

 
where 
 

𝐁𝟐 =  b𝑖𝑗  2  , 𝐀𝐓 =  𝒂𝟏, 𝒂𝟐, … , 𝒂𝒌 .  

 
Now, the inverse matrix of 𝐁𝟐 is given by 
 

𝐁2
−1 =  b𝑖𝑗

∗  2  . 

 
Using this value of 𝐁2

−1 in (11), we have  
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Similarly, from (3) and (6), we obtain  
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which can be written in the matrix form as  
 

𝐁𝐦𝐏𝐦 = 𝜆𝑅𝑚 − 𝜂𝑚  𝐒,        (13) 
 
where  
 

 𝐁𝐦 =  bij m  ,  

𝑅𝑚
𝑇 =   C𝑗𝑃𝑚−𝑗 ,1
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Now, the inverse matrix of 𝐁𝐦  is given by 
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𝐁𝐦
−𝟏 =  bij

∗  m  .  

 
Using this value of 𝐁𝐦

−𝟏 in (13), we get 
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3 ≤ 𝑚 ≤ 𝑁 − 1.         (14) 
 
Then, from (4) we have 
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Equations (9), (12), (14) and (15) are the required recurrence relations, that 

give all the probabilities in terms of P0, which itself may now be determined by 

using the normalizing condition: 
 

 𝑃0 +   𝑃𝑚,𝑟
𝑘
𝑟=1 = 1𝑁

𝑚=1 ,        (16) 

 
Hence all the probabilities are completely known in terms of the queue 

parameters. 
The following example illustrates the method discussed above. 
 
Example: 
In the above system: MX /Hk /1/N with reneging, letting k = 2, N = 4, i.e., the 

queue: MX /H2 /1/4 with reneging, the results are: 
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Now, from (16) 
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Therefore, the expected number of units in the system and in the queue are, 

respectively, 
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and the expected waiting time in both the system and the queue are obtained 
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where 
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. 

Moreover, if we put 1 = 0.4, 2 = 0.6, 1 = 3, 2 = 4,  = 5, = 0.3, C1 = 0.4, C2 = 
0.3, C3 = 0.1 and C4 = 0.2, we get: 

 
 𝑃0 = 0.058901, 𝑃1,1 = 0.0353436, 𝑃1,2 = 0.0471248,  

 𝑃2,1 = 0.0656447, 𝑃2,2 = 0.0866124, 𝑃3,1 = 0.113753,  
 𝑃3,2 = 0.149465, 𝑃4,1 = 0.215968, 𝑃4,2 = 0.227182.  

 
Then, 
L = 2.94924, Lq = 2.00814, W = 0.895383 and Wq = 0.609669. 
 
SPECIAL CASES 
 
Some queueing systems can be obtained as special cases of this system: 
(1) Let r = rs and s =  where rs is the Kronecker delta function, then we 

get the bulk queue: MX /M/1/N with reneging, and the results are: 
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(2) If we put C j j  1 , we get the system: M/Hk /1/N with reneging which 

studied by Shawky and El-Paoumy [5]. Moreover, if  = 0 the system becomes: 
M/Hk /1/N without reneging which discussed by Gupta and Goyal [1]. 

(3) Let N  , and  = 0, then we have the queue :MX /Hk /1 without 
reneging which treated by Gupta and Goyal [2] and Habib [3]. Moreover, if C j j  1 , 

r = rs and s = , then we get the convenential system: M/M/1. 
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