OPERATIONS PRE-CONTINUOUS MAPPINGS IN TOPOLOGICAL SPACES

D. Saravanakumar1, N. Kalaivani2, G. Sai Sundara Krishnan³

¹Department of Mathematics, Kalasalingam Academic of Research and Education, Krishnankoil, INDIA ²Department of Mathematics, Vel Tech Dr. RR and Dr. SR Technical University, Chennai, INDIA ³Department of Applied Mathematics and Computational Sciences, PSG College of Technology, Coimbatore, INDIA

E-mails: saravana_13kumar@yahoo.co.in, kalaivani.rajam@gmail.com, g_ssk@yahoo.com

ABSTRACT

In this paper, we define the operations mappings in topological spaces such as (γ^*, β) -pre-continuous, (γ^*, β^*) -pre-continuous, (γ, β^*) -pre-open, (γ^*, β^*) -pre-open, (γ, β^*) -pre-closed, (γ^*, β^*) -pre-closed and (γ^*, β^*) -pre-homeomorphism and study *some their basic properties.*

Keywords: (γ^*, β) -pre-continuous, (γ^*, β^*) -pre-continuous, (γ, β^*) -pre-open, (γ^*, β^*) -pre-open, (γ, β^*) -pre-closed, (γ^*, β^*) -pre-closed, γ^* -pre-open, β^* -pre-open

AMS (2010) Subject Classifications: 54C05, 54C10 and 54D10.

INTRODUCTION

Mashhour et al.[6] and Andrijevic[1, 2] introduced the concept of pre-open sets and semi-pre-open sets respectively. Kasahara[3] defined the concept of operations α on topological spaces. Ogata^{[7}, 8] called the operations α (resp. α closed set) as γ -operations (resp. γ -closed set) and introduced the notion of τ_{γ} which is the collection of γ -open sets in topological spaces. Sai Sundara Krishnan and Balachandran^[9] initiated the concept of γ -pre-open sets and studied the separation axioms using γ -pre-open sets. Further, they generated a topology $\tau_{\gamma p}$ using γ -pre-open sets. Sai Sundara Krishnan et al.[10] obtained the concept of γ^* pre-open sets and γ^* -semi-pre-open sets in topological spaces and investigated some basic properties. D. Saravanakumar et al.[11, 12] generated the idea of operations mappings in topological spaces.

³⁰*Vol.4. No.2 (2018)* www.actaint.com

In this paper in section 3, we created the concept of operations approaches continuous mappings in topological spaces such as (γ^*, β) -pre-continuous, (γ^*, β^*) pre- continuous. Also, we investigated some of their essential properties through the γ^* -pre-open, γ^* -pre-closed and γ^* -pre-derived sets. In section 4, we obtained the idea of operations open, closed mappings such as (γ^*, β^*) -pre-open, (γ^*, β^*) pre-closed and studied some of their important properties. Moreover, we shows that every (γ^*, β^*) -pre-continuous (γ^*, β^*) -pre-closed image of γ^* -pg.closed set is β^* -pg closed. In addition, we proved that every (γ^*, β^*) -pre-continuous (γ^*, β^*) pre-closed inverse image of β^* -pg.closed set is γ^* -pg.closed.

PRELIMINARIES

An operation γ [3] on the topology τ is a mapping from τ into the power set $P(X)$ of X such that $V \subseteq V^{\gamma}$ for each $V \in \tau$, where V^{γ} denotes the value of γ at V. It is denoted by $\gamma: \tau \to P(X)$. A subset A of X is γ -open[7], if for each $x \in A$, there exists an open neighborhood **U** such that $x \in U$ and $U^{\gamma} \subseteq A$. Its complement is called γ -closed and τ_{γ} denotes set of all γ -open sets in X. For a subset A of X, γ interior[7] of A is $int_{\gamma}(A) = \{x \in A : x \in N \in \tau \text{ and } N^{\gamma} \subseteq A \text{ for some } N\}$ and γ closure [7] of A is $cl_v(A) = \{x \in X : x \in U \in \tau \text{ and } U^{\gamma} \cap A \neq \emptyset \text{ for all } U\}$. An operation γ on τ is regular[7], if for any open neighborhoods U, V of each $x \in X$, there exists an open neighborhood W of x such that $U^{\gamma} \cap V^{\gamma} \supseteq W^{\gamma}$; open[7], if for every neighborhood *U* of each $x \in X$, there exists a *y*-open set *B* such that $x \in B$ and U^{γ} \supset B. A space X is y-regular[7], if for each $x \in X$ and for each open neighborhood V of x, there exists an open neighborhood U of x such that $U^{\gamma} \subset V$. A subset A of X is γ^* -dense (resp. γ^* -nowhere dense, γ^* -pre-open)[10], if $cl_{\gamma}(A) = X$ (resp. $int_v(cl_v(A)) = \emptyset$, $A \subset int_v(cl_v(A))$). The set of all γ^* -pre-open sets is denoted by $PO_{\nu^*}(X)$. A is γ^* -pre-closed[10] in X if and only if $X - A$ is γ^* -pre-open in X. A is γ^* pre-clopen[10], if A is both γ^* -pre-open and γ^* -pre-closed in X. For a subset A of X, γ^* -pre-interior[10] of A is $pint_{\gamma^*}(A) = \bigcup \{ U : U \in PO_{\gamma^*}(X) \text{ and } U \subseteq A \}$ and γ^* -preclosure[10] of A is $pcl_{\mathbf{v}}(A) = \bigcap \{ F : X - F \in PO_{\mathbf{v}}(X) \text{ and } A \subseteq F \}.$ A space X is \mathbf{v}^* . submaximal[10], if every γ^* -dense set of X is γ -open in X. A subset A of X is γ^* *pg*.closed if $pel_{\gamma^*}(A) \subseteq U$ whenever $A \subseteq U$ and U is γ^* -pre-open. A space X is γ^* pre- $T_0[10]$ if for each distinct points $x, y \in X$, there exists a $U \in PO_{\nu}^{\bullet}(X)$ such that $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$. A space X is γ^* -pre- $T_1[10]$ if for each distinct points $x, y \in X$, there exists $U, V \in PO_{\gamma^*}(X)$ such that $x \in U, y \notin U, x \notin V$ and $y \in \gamma$ V. A space X is γ^* -pre- $T_2[10]$ if for each distinct points $x, y \in X$, there exists U, V $\in PO_{\gamma^*}(X)$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$. A space X is γ^* -pre- $T_{\frac{1}{2}}[10]$ if for each γ^* -pg closed set of X is γ^* -pre-closed. A mapping $f : X \to Y$ is (γ, β) irresolute[5] if for any β -open set B of Y , f -1(B) is γ -open in X .

Proposition 2.1.[10] Every γ^* -pre-closed set is γ^* -pg.closed set. But the converse need not be true.

Throughout this paper let X , Y and Z be three topological spaces and operations $\gamma: \tau \to P(X)$, $\beta: \sigma \to P(Y)$ and $\rho: \eta \to P(Z)$ on topologies τ , σ and η respectively. Here $PO_{\gamma^*}(X)$, $PO_{\beta^*}(Y)$ and $PO_{\rho^*}(Z)$ are denotes the family of γ^* -preopen sets, β^* -pre-open sets and ρ^* -pre-open sets respectively.

(γ^*, β^*) -PRE-CONTINUOUS MAPPINGS

Definition 3.1. A mapping $f: X \rightarrow Y$ is said to be (γ^*, β) -pre-continuous (resp. (y^*, β^*) -pre-continuous) if $f^{-1}(0)$ is γ^* -pre-open in X whenever O is β -open (resp. β^* -pre-open) in Y.

Remark 3.1. (i) Every (γ^*, β^*) -pre-continuous mapping is (γ^*, β) -precontinuous. But the converse need not be true.

Let $X = \{a, b, c\}$, $Y = \{1, 2, 3\}$, $\tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}\$ and $\sigma = \{\emptyset, Y, \{1\}, \{1, c\}\}$ 3}} and define operations $\gamma: \tau \to P(X)$ and $\beta: \sigma \to P(Y)$ by

 $= \int cl(A)$ if $A = \{a, c\}$ ${a, c}$ *cl*(*A*) *if* $A = \{a, c\}$ *A if* $A \neq \{a, c\}$ $\int cl(A)$ if $A =$ $\begin{cases} A & \text{if } A \neq \end{cases}$ for every $A \in \tau$ and $\beta(A)$ = $\{3\}$ 3 $3\frac{1}{3}$ if 3 *A if* $3 \in A$ $A \cup \{3\}$ *if* $3 \notin A$ $\begin{cases} A & \text{if } 3 \in A \end{cases}$ $\begin{cases} A \cup \{3\} & \text{if } 3 \notin A \end{cases}$ for every

 $A \in \sigma$ respectively.

Define $f: X \to Y$ by $f(a) = 3$, $f(b) = 2$ and $f(c) = 1$. Then f is (γ^*, β) -precontinuous. Also $f^{-1}(\{1\}) = \{c\}$ is not γ^* -pre-open in X for the β^* -pre-open set $\{1\}$ of Y. Hence f is not (γ^*, β^*) -pre-continuous.

(ii) The concepts of (γ^*, β^*) -pre-continuous and (γ, β) -irresolute mappings are independent.

Let $X = \{a, b, c\}$, $Y = \{1, 2, 3\}$, $\tau = \{\emptyset, X, \{c\}, \{a, c\}, \{b, c\}\}\$ and $\sigma = \{\emptyset, Y, \{2\}, \{2, c\}\}$ }} and define operations $\gamma: \tau \to P(X)$ and $\beta: \sigma \to P(Y)$ by

 $= \int cl(A)$ if $A = \{c\}$ ${c}$ $cl(A)$ *if* $A = \{c\}$ *A if* $A \neq \{c\}$ $\int cl(A)$ if $A =$ $\begin{cases} A & \text{if } A \neq \end{cases}$ for every $A \in \tau$ and $\beta(A) = \int cl(A)$ if $A = \{2\}$ {2} $cl(A)$ *if A A if A* $\int cl(A)$ if $A =$ $\begin{cases} A & \text{if } A \neq \end{cases}$ for every

Define $f: X \to Y$ by $f(a) = 2$, $f(b) = 1$ and $f(c) = 3$. Then f is (γ, β) . irresolute. Also $f^{-1}(\{2\}) = \{a\}$ is not γ^* -pre-open in X for the β^* -pre-open set $\{2\}$ of Y. Hence f is not (γ^*, β^*) -pre-continuous.

Also, consider $X = \{a, b, c\}$, $Y = \{1, 2, 3\}$, $\tau = \{\emptyset, X, \{a\}, \{a, c\}\}\$ and $\sigma = \{\emptyset, Y,$ $\{1\}$, $\{2\}$, $\{1, 2\}$ and define operations $\gamma: \tau \to P(X)$ and $\beta: \sigma \to P(Y)$ by

= ${c}$ *A if* $c \in A$ $A \cup \{c\}$ *if* $c \notin A$ $\begin{cases} A & \text{if } c \in A \end{cases}$ $\begin{cases} A \cup \{c\} & \text{if } c \notin A \end{cases}$ for every $A \in \tau$ and $\beta(A) = \int A \cup \{3\}$ if $A = \{1\}$ {1} $A \cup \{3\}$ *if A A if ^A* $\begin{cases} A \cup \{3\} & \text{if } A = \\ A & \text{if } A \neq \end{cases}$ for every

 $\in \sigma$ respectively.

Define $f: X \to Y$ by $f(a) = 1$, $f(b) = 3$ and $f(c) = 2$. Then f is (γ^*, β^*) -precontinuous. But $f^{-1}(\{2\}) = \{c\}$ is not y-open in X for the β -open set $\{2\}$ of Y. By Proposition 4.13[7], f is not (γ, β) -irresolute.

 $\in \sigma$ respectively.

³²*Vol.4. No.2 (2018)* www.actaint.com

(iii) Every (γ, β) -irresolute mapping is (γ^*, β) -pre-continuous. But the converse need not be true.

Let $X = \{a, b, c\}, Y = \{1, 2, 3\}, \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\$ and $\sigma = \{\emptyset, Y,$ $\{1\}$, $\{1, 2\}$, $\{1, 3\}$ and define operations $\gamma: \tau \to P(X)$ and $\beta: \sigma \to P(Y)$ by

 $= \int A$ if $A = \{a,b\}$ (A) if $A \neq \{a,b\}$ *A if* $A = \{a,b\}$ $cl(A)$ *if* $A \neq \{a,b\}$ $\int A$ if $A = \{a,b\}$ for every $A \in \tau$ and $\beta(A) = \int c l(A)$ if $A = \{1,3\}$ $cl(A)$ if $A \neq \{a,b\}$ ${1,3}$ $cl(A)$ *if A A if A* $\begin{cases} cl(A) & \text{if } A = \\ A & \text{if } A \neq \end{cases}$ for every $A \in$

 σ respectively.

Define $f: X \to Y$ by $f(a) = 1$, $f(b) = 2$ and $f(c) = 3$. Then f is (γ^*, β) -precontinuous. Also $f^{-1}(\{2\}) = \{b\}$ is not y-open in X for the β -open set $\{2\}$ of Y. Hence f is not (γ, β) -irresolute.

(iv) If X, Y are y-regular space and β -regular space respectively, then the concepts of (y^*, β^*) -pre-continuous and pre-continuous mappings coincide.

Theorem 3.1. Let $f: X \rightarrow Y$ be a mapping. Then the following statements are equivalent:

(i) f is (γ^*, β) -pre-continuous;

(ii) for each $x \in X$ and each β -open set $V \subset Y$ containing $f(x)$, there exists W $\in PO_{\mathbf{v}^*}(X)$ such that $x \in W$, $f(W) \subseteq V$;

(iii) the inverse image of each β -closed set in Y is γ^* -pre-closed in X.

Proof. (i) \Rightarrow (ii). Let $x \in X$ and V be any β -open set of Y containing $f(x)$. Set $W = f^{-1}(V)$, then by Definition 3.1, W is a γ^* -pre-open set containing x and $f(W)$ = $f(f^{-1}(V)) \subset V$

(ii) \Rightarrow (iii). Let F be a β -closed set of Y. Set $V = Y - F$, then V is β -open in Y. Let $x \in f^{-1}(V)$, by (ii), there exists a γ^* -pre-open set W of X containing x such that $f(W) \subseteq V$. Thus, we obtain that $x \in W \subseteq int_{\gamma}(cl_{\gamma}(W)) \subseteq int_{\gamma}(cl_{\gamma}(f^{-1}(V)))$ and hence $f^{-1}(V) \subset int_v(cl_v(f^{-1}(V)))$. This shows that $f^{-1}(V)$ is γ^* -pre-open in X. Hence $f^{-1}(F) = X - f^{-1}(Y - F) = X - f^{-1}(V)$ is γ^* -pre-closed in X.

(iii) \Rightarrow (i). Let B be a β -open set in Y. Then $F = Y - B$ is β -closed in Y. By (iii), $f^{-1}(F)$ is γ^* -pre-closed in X. Hence $f^{-1}(B) = X - f^{-1}(Y - B) = X - f^{-1}(F)$ is γ^* . pre-open in X .

Theorem 3.2. Let $f: X \to Y$ be a mapping and $\beta: \sigma \to P(Y)$ be an open operation on σ . Then the following statements are equivalent:

(i) f is (γ^*, β) -pre-continuous; (ii) $cl_{\gamma}(int_{\gamma}(f^{-1}(B))) \subseteq f^{-1}(cl_{\beta}(B))$ for each $B \subseteq Y$; (iii) $f(cl_v(int_v(A))) \subset cl_R(f(A))$ for each $A \subset X$.

Proof. Follows from the Definition 3.1 and Theorem 3.1(iii).

Theorem 3.3. Let $f: X \to Y$ be a (γ, β) -irresolute mapping and $\beta: \sigma \to P(Y)$ be an open operation on σ . Then (i) $f(cl_{\nu}(U)) \subset cl_R(f(U))$ for each γ -open set U in \boldsymbol{X}

(ii) $cl_v(f^{-1}(V)) \subset f^{-1}(cl_g(V))$ for each β -open set V in Y.

Proof. Follows from the Remark 3.1 and Theorem 3.2.

Theorem 3.4. If $f: X \to Y$ is a (y^*, β) -pre-continuous mapping and X_0 is a γ open subset of X, then the restriction $f|X_0: X_0 \to Y$ is (γ^*, β) -pre-continuous, where $\gamma: \tau \to P(X)$ is a regular operation on τ .

Proof. Follows from the Definition 3.1 and Theorem 2.5[10].

Theorem 3.5. Let X be a topological space, $\gamma: \tau \to P(X)$ be a regular operation on τ and ${V_k : k \in J}$ a cover of X by y-open sets of X. A mapping $f: X \to$ Y is (γ^*, β) -pre-continuous if and only if the restriction $f|V_k: V_k \to Y$ is (γ^*, β) -precontinuous for each $k \in J$.

Proof. Follows from the Theorems 2.1[10] and 3.4.

Definition 3.2. (i) Let X be a topological space and $\gamma: \tau \to P(X)$ be an operation on τ . A subset A of a space X is said to be a γ^* -pre-neighborhood of a point $x \in X$ if there exists a γ^* -pre-open set U such that $x \in U \subseteq A$.

Note that γ^* -pre-neighborhood of χ may be replaced by γ^* -pre-open neighborhood of x .

(ii) Let X be a space. $A \subset X$ and $p \in X$. Then p is called a γ^* -pre-limit point of A if $U \cap (A - \{p\}) \neq \emptyset$ for any γ^* -pre-open set U containing p. The set of all γ^* -prelimit points of A is called a γ^* -pre-derived set of A and is denoted by $pd_{\gamma^*}(A)$. Clearly if $A \subset B$ then $pd_{v} (A) \subset pd_{v} (B)$.

Remark 3.2. From the Definition 3.2(ii), it follows that p is a γ^* -pre-limit point of A if and only if $p \in pcl_{v} (A - \{p\})$.

Theorem 3.6. For any A, $B \subseteq X$, the γ^* -pre-derived sets have the following properties:

(i) $pcl_{v} (A) \supset A \cup pd_{v} (A)$; (ii) $\cup_i pd_{\nu} (A_i) = pd_{\nu} (\cup_i A_i)$; (iii) $pd_{v} (pd_{v} (A)) \subseteq pd_{v} (A);$ (iv) $pcl_{\mathcal{P}}(pd_{\mathcal{P}}(A)) = pd_{\mathcal{P}}(A)$.

Proof. Follows from the Definition 3.2(ii) and Remark 3.2.

³⁴*Vol.4. No.2 (2018)* www.actaint.com

Theorem 3.7. Let $f: X \to Y$ be a mapping. Then the following statements are equivalent:

(i) f is (γ^*, β^*) pre-continuous;

(ii) for each x in X, the inverse of every β^* -pre-neighborhood of $f(x)$ is a γ^* pre-neighborhood of x ;

(iii) for each point x in X and each β^* -pre-neighborhood B of $f(x)$, there is a γ^* -pre-neighborhood **A** of **x** such that $f(A) \subset B$;

(iv) for each $x \in X$ and each β^* -pre-open set B of $f(x)$, there is a γ^* -pre-open set A of x such that $f(A) \subset$

 \bm{B}

(v) $f(pcl_{v}(A)) \subseteq pcl_{\beta}(f(A))$ holds for every subset A of X; (vi) for any β^* -pre-closed set H of Y, $f^{-1}(H)$ is γ^* -pre-closed in X.

Proof. (i) \Rightarrow (ii). Let $x \in X$ and B be a β^* -pre-neighborhood of $f(x)$. By Definition 3.2(i), there exists $V \in PO_{\beta^*}(Y)$ such that $f(x) \in V \subseteq B$. This implies that $x \in f^{-1}(V) \subseteq f^{-1}(B)$ Since f is (γ^*, β^*) -pre-continuous, so $f^{-1}(V) \in \mathit{PO}_{\gamma^*}(X)$. Hence $f^{-1}(B)$ is a γ^* -pre-neighborhood of x.

(ii) \Rightarrow (i). Let $B \in \mathit{PO}_{\mathit{B}}(Y)$. Put $A = f^{-1}(B)$. Let $x \in A$. Then $f(x) \in B$. Clearly, B (being β^* -pre-open) is a β^* -pre-neighborhood of $f(x)$. By (ii), $A = f^{-1}(B)$ is a γ^* pre-neighborhood of x. Hence by Definition 3.2(i), there exists $A_x \in PO_{\nu}^{\bullet}(X)$ such that $x \in A_x \subseteq A$. This implies that $A = \bigcup_{x \in A} A_x$. By Theorem 2.1[10], A is γ^* -preopen in X. Therefore f is (γ^*, β^*) -pre-continuous.

(i) \Rightarrow (iii). Let $x \in X$ and B be a β^* -pre-neighborhood of $f(x)$. Then, there exists $O_{f(x)} \in PQ_{\beta^*}(Y)$ such that $f(x) \in O_{f(x)} \subseteq B$. It follows that $x \in f^{-1}(O_{f(x)}) \subseteq$ $f^{-1}(B)$ By (i), $f^{-1}(O_{f(x)}) \in PO_{\gamma^*}(X)$. Let $A = f^{-1}(B)$. Then it follows that A is γ^* . pre-neighborhood of x and $f(A) = f(f^{-1}(B)) \subseteq B$.

(iii) \Rightarrow (i). Let $U \in PO_{\beta^*}(Y)$. Take $W = f^{-1}(U)$. Let $x \in W$. Then $f(x) \in U$. Thus U is a β^* -pre-neighborhood of $f(x)$. By (iii), there exists a γ^* -preneighborhood V_x of x such that $f(V_x) \subseteq U$. Thus it follows that $x \in V_x \subseteq f^{-1}(f(V_x))$ $\subseteq f^{-1}(U) = W$. Since V_x is a γ^* -pre-neighborhood of x, which implies that there exists a $W_x \in PO_{v^*}(X)$ such that $x \in W_x \subseteq W$. This implies that $W = \bigcup_{x \in W} W_x$. By Theorem 2.1[10], W is γ^* -pre-open in X. Thus f is (γ^*, β^*) -pre-continuous.

(iii) \Rightarrow (iv). We may replaced the γ^* -pre-neighborhood of x as γ^* -pre-open neighborhood of x in condition (iii). Straightforward.

(iv) \Rightarrow (v). Let $y \in f(pcl_{v^*}(A))$ and V be any β^* -pre-open set containing y. Then, there exists a point $x \in X$ and a γ^* -pre-open set U such that $x \in U$ with $f(x)$ = y and $f(U) \subseteq V$. Since $x \in pol_{\gamma^*}(A)$, we have that $U \cap A \neq \emptyset$ and hence $\emptyset \neq \emptyset$ $f(U \cap A) \subset f(U) \cap f(A) \subset V \cap f(A)$. This implies that $y \in \text{pel}_{R^*}(f(A))$. Therefore, we have that $f(pcl_{v} \cdot (A)) \subset pcl_{\beta} \cdot (f(A))$.

(v) \Rightarrow (vi). Let *H* be a β^* -pre-closed set in *Y*. Then $\text{pcl}_{\beta^*}(H) = H$. By (v), $f(pcl_{v^*}(f^{-1}(H))) \subseteq pcl_{\beta^*}(f(f^{-1}(H))) \subseteq pcl_{\beta^*}(H) = H$ holds. Therefore

 $\mathit{pol}_{\gamma}(f^{-1}(H)) \subseteq f^{-1}(H)$ and thus $f^{-1}(H) = \mathit{pol}_{\gamma}(f^{-1}(H))$. Hence $f^{-1}(H)$ is γ^* pre-closed in X .

(vi) \Rightarrow (i). Let *B* be a β^* -pre-open set in *Y*. We take *H* = *Y* - *B*. Then *H* is β^* pre-closed in Y. By (iv), $f^{-1}(H)$ is γ^* -pre-closed in X. Hence $f^{-1}(B)$ = $X - f^{-1}(Y - B) = X - f^{-1}(H)$ is γ^* -pre-open in X.

Theorem 3.8. A mapping $f: X \to Y$ is (γ^*, β^*) pre-continuous if and only if $f(pd_{v^*}(A)) \subseteq pcl_{\beta^*}(f(A))$, for all $A \subseteq X$.

Proof. Let $f: X \to Y$ be (γ^*, β^*) -pre-continuous. Let $A \subset X$ and $x \in pd_{\gamma^*}(A)$. Assume that $f(x) \notin f(A)$ and let V denote a β^* -pre-neighborhood of $f(x)$. Since f is (γ^*, β^*) -pre-continuous, so by Theorem 3.7(iii), there exists a γ^* -preneighborhood U of x such that $f(U) \subseteq V$. From $x \in pd_{v^*}(A)$, it follows that $U \cap A \neq$ \emptyset there exists, therefore, at least one element $a \in U \cap A$ such that $f(a) \in f(A)$ and $f(a) \in V$. Since $f(x) \notin f(A)$, we have that $f(a) \neq f(x)$. Thus every β^* -preneighborhood of $f(x)$ contains an element $f(a)$ of $f(A)$ different from $f(x)$. Consequently, $f(x) \in pd_{R^*}(f(A))$. Conversely, suppose that f is not (γ^*, β^*) -precontinuous. Then by Theorem 3.7(iii), there exists $x \in X$ and a β^* -preneighborhood V of $f(x)$ such that every γ^* -pre-neighborhood U of x contains at least one element $a \in U$ for which $f(a) \notin V$. Put $A = \{a \in X : f(a) \notin V\}$. Since $f(x)$. $\in V$, therefore $x \notin A$ and hence $f(x) \notin f(A)$. Since $f(A) \cap (V - \{f(x)\}) = \emptyset$, therefore $f(x) \notin pd_{\beta^*}(f(A))$. It follows that $f(x) \in f(pd_{\gamma^*}(A))$ – $(f(A) \cup pd_{\beta^*}(f(A))) \neq \emptyset$, which is a contradiction to the given condition.

Theorem 3.9. Let $f: X \to Y$ be one-to-one mapping. Then f is (γ^*, β^*) -precontinuous if and only if $f(pd_{v^*}(A)) \subseteq pd_{\beta^*}(f(A))$, for all $A \subseteq X$.

Proof. Let $A \subseteq X$, $x \in pd_{\gamma^*}(A)$ and V be a β^* -pre-neighborhood of $f(x)$. Since f is (γ^*, β^*) -pre-continuous, then by Theorem 3.7(iii), there exists a γ^* -preneighborhood U of x such that $f(U) \subset V$. But $x \in pd_{v^*}(A)$ gives there exists an element $a \in U \cap A$ such that $a \neq x$. Clearly $f(a) \in f(A)$ and since f is one-to-one, $f(a) \neq f(x)$. Thus every β^* -pre-neighborhood V of $f(x)$ contains an element $f(a)$ of $f(A)$ different from $f(x)$. Consequently, $f(x) \in pd_{\beta^*}(f(A))$. Therefore, $f(pd_{v} \cdot (A)) \subset pd_{g} \cdot (f(A))$. Converse follows from the Theorem 3.8.

Theorem 3.10. Let $f: X \to Y$ be a (γ^*, β^*) -pre-continuous and injective. If Y is β^* -pre- T_2 (resp. β^* -pre- T_1), then X is γ^* -pre- T_2 (resp. γ^* -pre- T_1).

Proof. Suppose Y is β^* -pre- T_2 . Let x and y be two distinct points of X. Then, there exists two β^* -pre-open sets U and V such that $f(x) \in U$, $f(y) \in V$ and $U \cap V$ = \emptyset . Since f is (γ^*, β^*) -pre-continuous, for U and V, there exists two γ^* -pre-open sets W and S such that $x \in W$ and $y \in S$, $f(W) \subset U$ and $f(S) \subset V$, implies that $W \cap S = \emptyset$. Hence X is γ^* -pre- T_2 . In similar way one can prove that X is γ^* -pre- T_1 whenever Y is β^* -pre- T_1 .

(γ^*, β^*) -PRE-OPEN MAPPINGS

Definition 4.1. A mapping $f: X \to Y$ is said to be (γ, β^*) -pre-open (resp. (γ, β^*) -pre-closed, (γ^*, β^*) -pre-open, (γ^*, β^*) -pre-closed) if $f(\mathcal{O})$ is β^* -pre-open (resp. β^* -pre-closed, β^* -pre-open, β^* -pre-closed) in Y whenever α is y-open (resp. γ -closed, γ^* -pre-open, γ^* -pre-closed) in X.

Remark 4.1. (i) Every (γ^*, β^*) -pre-open(closed) mapping is (γ, β^*) -preopen(closed). But the converse need not be true.

Note that if $f: X \to Y$ is (γ^*, β^*) -pre-open(closed) and $g: Y \to Z$ is (β^*, ρ^*) pre- open(closed), then the composition $g \circ f : X \to Z$ is a (γ^*, ρ^*) pre- open(closed) mapping.

Theorem 4.1. Let $f: X \rightarrow Y$ be a mapping. Then the following statements are equivalent:

(i) f is (γ, β^*) pre-open;

(ii) for each $x \in X$ and each y-neighborhood U of x, there exists a β^* -pre-open set V of Y such that $f(x) \in V \subseteq f(U)$;

(iii) for each subset $W \subset Y$ and each y-closed set F of X containing $f^{-1}(W)$, there exists a β^* -pre-closed set H of Y such that $W \subset H$ and $f^{-1}(H) \subset F$.

Proof. (i) \Rightarrow (ii). Suppose that f is a (γ, β^*) -pre-open mapping. For each $x \in$ X and each y-neighborhood U of x, there exists a y-open set U_0 such that $x \in U_0 \subseteq$ *U*. Since f is (γ, β^*) -pre-open, $V = f(U_0)$ is β^* -pre-open and $f(x) \in V \subseteq f(U)$.

(ii) \Rightarrow (i). Let U be a γ -open set of X. For each $x \in U$, there exists a β^* -preopen set $V_{f(x)}$ such that $f(x) \in V_{f(x)} \subseteq f(U)$. Therefore, $f(U) = \bigcup \{V_{f(x)} : x \in U\}$ and hence by Theorem 2.1[10], $f(U)$ is β^* -pre-open. This shows that f is (γ, β^*) -preopen.

(i) \Rightarrow (iii). Let $H = Y - f(X - F)$. Since $f^{-1}(W) \subset F$, $f(X - F) \subset Y - W$. Since f is (γ, β^*) -pre-open, then H is β^* -pre-closed and $f^{-1}(H) = X - f^{-1}(f(X - F)) \subset$ $X - (X - F) = F$

(iii) \Rightarrow (i). Let U be any y-open set of X and $W = Y - f(U)$. Then $f^{-1}(W) =$ $X-f^{-1}(f(U)) \subseteq X-U$ and $X-U$ is y-closed. By (iii), there exists a β^* -preclosed set *H* of *Y* containing *W* such that $f^{-1}(H) \subseteq X - U$. Then, $f^{-1}(H) \cap U = \emptyset$ and $H \cap f(U) = \emptyset$. Therefore, $Y - f(U) \supseteq H \supseteq W = Y - f(U)$ and $f(U)$ is β^* -preopen in **Y**. This shows that f is (γ, β^*) -pre-open.

Corollary 4.2. Suppose $f: X \to Y$ is a (γ, β^*) -pre-open mapping and $\gamma: \tau \to Y$ $P(X)$ is an open operation on τ . Then the following properties hold:

(i) $f^{-1}(cl_{\beta}(int_{\beta}(B))) \subseteq cl_{\gamma}(f^{-1}(B))$ for each set $B \subseteq Y$; $\lim_{(ii)} f^{-1}(cl_{\beta}(V)) \subset cl_{\nu}(f^{-1}(V))$ for each β -open set V of Y.

Proof. Follows from the Theorem 4.1(iii).

Theorem 4.3. Let $f: X \to Y$ be a mapping and $\gamma: \tau \to P(X)$ be an open operation on τ . Then the following conditions are equivalent:

(i) f is (γ, β^*) pre-open; (ii) $f(int_v(A)) \subseteq pint_{\beta^*}(f(A))$ for $A \subseteq X$; (iii) $int_v(f^{-1}(B)) \subset f^{-1}(pint_{\mathcal{R}^*}(B))$ for $B \subset Y$.

Proof. Straightforward from the Definition 4.1.

Theorem 4.4. Let $f: X \rightarrow Y$ be a bijective mapping. Then the following conditions are equivalent:

(i) f^{-1} $Y \rightarrow X$ is (β^*, γ) -pre-continuous; (ii) f is (γ, β^*) -pre-open; (iii) f is (γ, β^*) pre-closed.

Proof. Follows from the Definitions 3.1. and 4.1.

Theorem 4.5. Let $f: X \rightarrow Y$ be a mapping. Then the following statements are equivalent:

(i) f is (γ^*, β^*) -pre-open;

(ii) for each $x \in X$ and for every $A \in PO_{\nu^*}(X)$ such that $x \in A$, there exists B $\in PO_{\mathcal{B}^*}(Y)$ such that $f(x) \in$

B and $B \subset f(A)$;

(iii) for each $x \in X$ and for every γ^* -pre-neighborhood U of x in X, there exists a β^* -pre-neighborhood V of $f(x)$ in Y such that $V \subset f(U)$;

(iv) $f(\text{pint}_{v^*}(A)) \subseteq \text{pint}_{\beta^*}(f(A))$, for all $A \subseteq X$; (v) $pint_{v^*}(f^{-1}(B)) \subseteq f^{-1}(pint_{\beta^*}(B))$, for all $B \subseteq Y$; (vi) $f^{-1}(pcl_{\rho^*}(B)) \subset pcl_{\nu^*}(f^{-1}(B))$ for all $B \subset Y$.

Proof. (i) \Rightarrow (ii). Let A be a γ^* -pre-open set of x in X. Then $f(x) \in f(A)$. Since f is (γ^*, β^*) -pre-open, $f(A)$ is β^* -pre-open neighborhood of $f(x)$ in Y. Then by Definition 3.2(i), there exists $B \in PO_{R^*}(Y)$ such that $f(x) \in B \subseteq f(A)$.

(ii) \Rightarrow (i). Let $A \in PO_{\nu}^{\bullet}(X)$ and $x \in A$. Then by assumption, there exists $B \in$ $PO_{B^*}(Y)$ such that $f(x) \in B \subseteq f(A)$. Therefore $f(A)$ is a β^* -pre-neighborhood of $f(x)$ in Y and this implies that $f(A) = \bigcup_{f(x) \in f(A)} B$. Then by Theorem 2.1[10], $f(A)$ is β^* -pre-open in **Y**. Hence f is (γ^*, β^*) -pre-open.

(i) \Rightarrow (iii). Let U be a γ^* -pre-neighborhood of $x \in X$. Then by Definition 3.2(i), there exists a γ^* -pre-open set W such that $x \in W \subseteq U$. This implies that $f(x) \in$

 $f(W) \subseteq f(U)$. Since f is a (γ^*, β^*) -pre-open mapping, $f(W)$ is β^* -pre-open. Hence $V = f(W)$ is a β^* -pre-neighborhood of $f(x)$ and $V \subset f(U)$.

(iii) \Rightarrow (i). Let $U \in PO_{\nu}^{\bullet}(X)$ and $x \in U$. Then U is a γ^* -pre-neighborhood of x. So by (iii), there exists a β^* -pre-neighborhood V of $f(x)$ such that $f(x) \in V$ $f(U)$. That is, $f(U)$ is a β^* -pre-neighborhood of $f(x)$. Thus $f(U)$ is a β^* -preneighborhood of each of its points. Therefore $f(U)$ is β^* -pre-open. Hence f is (γ^*, β^*) pre-open.

(i) \Rightarrow (iv). Let $x \in pint_{v} (A)$. Then, there exists $U \in PO_{v} (X)$ such that $x \in U$ $\subset A$. So $f(x) \in f(U) \subset f(A)$. Since f is (γ^*, β^*) -pre-open, therefore $f(U)$ is β^* -preopen in Y. Hence $f(x) \in pint_{\beta^*}(f(A))$. Thus $f(pint_{v^*}(A)) \subseteq pint_{\beta^*}(f(A))$.

 $(iv) \Rightarrow (i)$. Let $U \in PO_{v^*}(X)$. Then by (iv) , $f(U) = f(\text{pint}_{v^*}(A)) \subseteq$ $pint_{\mathcal{B}^*}(f(A)) \subset f(U)$ or $f(U) \subset pint_{\mathcal{B}^*}(f(U)) \subset f(U)$. This implies that $f(U)$ is \mathcal{B}^* . pre-open in **Y**. So f is (y^*, β^*) -pre-open.

(iv) \Rightarrow (v). Let B be any subset of Y. Clearly, $\text{pint}_{v^*}(f^{-1}(B))$ is γ^* -pre-open in *X*. Also, $f(\text{pint}_{\gamma^*}(f^{-1}(B))) \subseteq f(f^{-1}(B)) \subseteq B$. Since f is (γ^*, β^*) -pre-open and by (iv), $f(\text{pint}_{\gamma^*}(f^{-1}(B))) \subseteq \text{pint}_{\beta^*}(B)$ Therefore $\text{pint}_{\gamma^*}(f^{-1}(B)) \subseteq$ $f^{-1}(f(\text{pint}_{v^*}(f^{-1}(B)))) \subseteq f^{-1}(\text{pint}_{g^*}(B))$ This gives $\text{pint}_{v^*}(f^{-1}(B)) \subseteq$ $f^{-1}(pint_{R^*}(B))$

(v) \Rightarrow (iv). Let $A \subseteq X$. By (v), it is found that $\text{pint}_{v^*}(A) \subseteq \text{pint}_{v^*}(f^{-1}(f(A)))$ $\subseteq f^{-1}(pint_{\beta^*}(f(A)))$. This implies that $f(pint_{\mathbf{v}^*}(A)) \subseteq f(pint_{\mathbf{v}^*}(f^{-1}(f(A)))) \subseteq$ $f(f^{-1}(pint_{\beta^*}(f(A)))) \subseteq pint_{\beta^*}(f(A))$. Consequently, $f(pint_{\gamma^*}(A)) \subseteq pint_{\beta^*}(f(A))$, for all $A \subset X$.

 $(v) \Rightarrow$ (vi). Let B be any subset of Y. By (v), $pint_{v} (f^{-1}(Y-B)) \subset$ $f^{-1}(pint_{\beta^*}(Y-B))$. Then $pint_{V^*}(X-f^{-1}(B)) \subseteq f^{-1}(pint_{\beta^*}(Y-B))$. As $pint_{\beta^*}(B)$ $= Y - pcl_{\beta^*}(Y-B)$, therefore $X - pcl_{\gamma^*}(f^{-1}(B)) \subseteq f^{-1}(Y - pcl_{\beta^*}(B))$ or $X - pcl_{v^*}(f^{-1}(B)) \subseteq X - f^{-1}(pcl_{\beta^*}(B))$. Hence $f^{-1}(pcl_{\beta^*}(B)) \subseteq pcl_{v^*}(f^{-1}(B))$.

(vi) \Rightarrow (v). Let $B \subseteq Y$. By (vi), $f^{-1}(pcl_{\beta^*}(Y - B)) \subseteq pcl_{\gamma^*}(f^{-1}(Y - B))$. Then, we have that $X - pcl_{\gamma^*}(f^{-1}(Y - B)) \subseteq X - f^{-1}(pcl_{\beta^*}(Y - B)).$ Hence $X - pcl_{v^*}(X - f^{-1}(B)) \subseteq f^{-1}(Y - pcl_{\beta^*}(Y - B))$. This gives $pint_{v^*}(f^{-1}(B)) \subseteq$ $f^{-1}(pint_{R^*}(B))$

Theorem 4.6. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two mappings such that the composite mapping $g \circ f : X \to Z$ be a (γ^*, ρ^*) -pre-continuous.

(i) If g is (β^*, ρ^*) -pre-open injection, then f is (γ^*, β^*) -pre-continuous;

(ii) If f is (γ^*, β^*) -pre-open surjection, then g is (β^*, ρ^*) -pre-continuous.

Proof. Follows from the Definition 4.1.

Definition 4.2. A mapping $f: X \rightarrow Y$ is said to be (γ^*, β^*) -prehomeomorphism, if f is bijective, (γ^*, β^*) -pre-continuous and f^{-1} is (β^*, γ^*) -precontinuous.

Remark 4.2. From the Definitions 4.1 and 4.2, every bijective, (γ^*, β^*) -precontinuous and (γ^*, β^*) pre-closed map is (γ^*, β^*) -pre-homeomorphism.

Theorem 4.7. Let $f: X \to Y$ be (γ^*, β^*) -pre-homeomorphism. If X is γ^* -pre- $T_{\frac{1}{2}}$ then Y is β^* -pre- $T_{\frac{1}{2}}$

Proof. Let $\{y\}$ be a singleton set of **Y**. Then, there exists a point **x** of **X** such that $y = f(x)$. It follows from the assumption and Theorem 5.5[10] that $\{x\}$ is γ^* . pre-open or γ^* -pre-closed. By Theorem 3.7(vi), $\{y\}$ is β^* -pre-open or β^* -pre-closed. This implies that Y is a β^* -pre- $T_{\frac{1}{2}}$ space.

Theorem 4.8. A mapping $f: X \to Y$ is (γ^*, β^*) -pre-closed if and only if $\mathit{pel}_{\mathit{B}}(f(A)) \subseteq f(\mathit{pel}_{v}(\mathit{A}))$, for every subset A of X.

Proof. Suppose f is (y^*, β^*) -pre-closed and let $A \subseteq X$. Since f is (y^*, β^*) -preclosed, therefore $f(pcl_{v^*}(A))$ is β^* -pre-closed in Y. Since $f(A) \subseteq f(pcl_{v^*}(A))$, therefore $\mathit{pcl}_g \cdot (f(A)) \subseteq f(\mathit{pcl}_{v'}(A))$. Conversely, suppose A is a γ^* -pre-closed set in X. By hypothesis, $f(A) \subseteq pcl_{\beta} (f(A)) \subseteq f(pcl_{\gamma}(A)) = f(A)$. Hence $f(A) =$ $pcl_{\beta^*}(f(A))$. Thus $f(A)$ is β^* -pre-closed set in Y. This proves that f is (γ^*, β^*) -preclosed.

Theorem 4.9. A mapping $f: X \to Y$ is (y^*, β^*) -pre-closed if and only if $cl_{\beta}(int_{\beta}(f(A))) \subseteq f(pcl_{\gamma^*}(A))$, for every subset A of X.

Proof. Suppose f is (y^*, β^*) -pre-closed and let $A \subseteq X$. Then $f(\mathit{pel}_{y^*}(A))$ is β^* pre-closed in Y. This implies that $cl_{\beta}(int_{\beta}(f(pcl_{\gamma} \cdot (A)))) \subseteq f(pcl_{\gamma} \cdot (A))$. Then $cl_{\beta}(int_{\beta}(ft_{\beta}(f(A))) \subseteq cl_{\beta}(int_{\beta}(f(pcl_{v}(A))))$ gives $cl_{\beta}(int_{\beta}(f(A))) \subseteq f(pcl_{v}(A))$. Conversely, suppose that A is a γ^* -pre-closed set in X. Then by hypothesis, $cl_{\beta}(int_{\beta}(f(A))) \subseteq f(pcl_{\gamma}(A))$. Since A is γ^* -pre-closed, $f(pcl_{\gamma}(A)) = f(A)$. Therefore $cl_{\beta}(int_{\beta}(f(A))) \subseteq f(A)$. Hence $f(A)$ is β^* -pre-closed in Y. This implies that f is (γ^*, β^*) -pre-closed.

Theorem 4.10. A mapping $f: X \to Y$ is a (γ^*, β^*) -pre-closed if and only if for each subset B of Y and each γ^* -pre-open set A in X containing $f^{-1}(B)$, there exists a β^* -pre-open set C in Y containing B such that $f^{-1}(C) \subseteq A$.

Proof. Let $C = Y - f(X - A)$. Since $f^{-1}(B) \subset A$, $f(X - A) \subset Y - B$. Since f is (y^*, β^*) -pre-closed, then C is β^* -pre-open and $f^{-1}(C) = X - f^{-1}(f(X - A))$ \subset $X - (X - A) = A$. Conversely, let U be any γ^* -pre-closed set of X and $B = Y - f(U)$. Then $f^{-1}(B) = X - f^{-1}(f(U)) \subseteq X - U$ and $X - U$ is γ^* -pre-open. By the hypothesis, there exists a β^* -pre-open set C of Y containing B such that $f^{-1}(C)$ \subset

⁴⁰*Vol.4. No.2 (2018)* www.actaint.com

 $X - U$ Then $f^{-1}(C) \cap U = \emptyset$ and $C \cap f(U) = \emptyset$. Therefore, $Y - f(U) \supseteq C \supseteq B =$ $Y - f(U)$ and $f(U)$ is β^* -pre-closed in Y. This shows that f is (γ^*, β^*) -pre-closed.

Theorem 4.11. Let $f: X \rightarrow Y$ be a bijective mapping. Then the following conditions are equivalent:

(i) f is (γ^*, β^*) -pre-closed; (ii) f is (γ^*, β^*) -pre-open; (iii) f^{-1} is (β^*, γ^*) -pre-continuous.

Proof. Follows from the Definition 4.1 and Theorem 4.5(vi).

Definition 4.3. Let $id: \tau \rightarrow P(X)$ be the identity operation. A mapping $f: X \rightarrow$ Y is said to be (id, β^*) pre-closed if for any pre-closed set F of X, $f(F)$ is β^* -preclosed in Y .

Theorem 4.12. If f is bijective mapping and f^{-1} , $Y \rightarrow X$ is (id, β^*) -precontinuous, then f is (id, β^*) -pre-closed.

Proof. Follows from the Definitions 3.1, 4.1 and 4.3.

Theorem 4.13. Let $f: X \to Y$ be (γ^*, β^*) -pre-continuous and (γ^*, β^*) -preclosed. Then

(i) for every γ^* -pg closed set A of X, the image $f(A)$ is β^* -pg closed; (ii) for every β^* -pg closed set B of Y, the set $f^{-1}(B)$ is γ^* -pg closed.

Proof. Follows from the Theorems 2.1[10], 2.9(iii)[10], 3.7(v) and (vi).

Theorem 4.14. Let $f: X \to Y$ be (γ^*, β^*) -pre-continuous and (γ^*, β^*) -preclosed.

(i) If f is injective and Y is β^* -pre- T_1 , then X is γ^* -pre- T_1 ;

(ii) If f is surjective and X is γ^* -pre- T_1 , then Y is β^* -pre- T_1 .

Proof. Follows from the Theorem 4.13(i) and (ii).

Theorem 4.15. Suppose γ is a regular operation on τ . Then X is a γ^* -pre- $T_{\frac{1}{2}}$

space. **Proof.** By Proposition 2.9[7], we have that (X, τ_{ν}) is a topological space. Now to prove X is γ^* -pre- $T_{\frac{1}{2}}$, it is enough to show that $\{x\}$ is γ^* -pre-open or γ^* -pre-

closed.

Case (i): Suppose $\{x\} \in \tau_{\nu}$. Then by Theorem 2.2[10], $\{x\}$ is γ^* -pre-open.

Case(ii): Suppose $\{x\} \notin \tau_{\nu}$. Then $cl_{\nu}(int_{\nu}(\{x\})) = cl_{\nu}(\emptyset) = \emptyset \subset \{x\}$. Hence $\{x\}$ is γ^* -pre-closed.

Theorem 4.16. Let X be a y-regular space and $\gamma: \tau \to P(X)$ be a regular operation on τ . Then X is γ^* -pre- $T_{\frac{1}{n}}$ if and only if (X, τ_{γ}) is pre- $T_{\frac{1}{n}}$.

Proof. By Proposition 2.9[7], we have that (X, τ_{ν}) is a topological space. By Theorem 2.27[4], it is a pre- $T_{\frac{1}{2}}$ space. Conversely, if (X, τ_{γ}) is pre- $T_{\frac{1}{2}}$, then $\{x\}$ is pre-open or pre-closed in X. Hence it is γ^* -pre-open or γ^* -pre-closed in X and by Theorem 5.5[10], we have that *X* is a γ^* -pre- $T_{\frac{1}{2}}$ space.

Theorem 4.17. Let X be a y-regular space and $\gamma: \tau \rightarrow P(X)$ be a regular operation on τ . Then X is γ^* -pre- T_2 if and only if X is pre- T_2 .

Proof. Follows from the Theorem 2.3[10].

REFERENCES

- 1) D. Andrijevic, (1986), Semi pre open sets, *Mate. Vesnik,* 38, 24-32.
- 2) D. Andrijevic, (1987), On the topology generated by preopen sets, *Mate. Vesnik,* 39, 367-376.
- 3) S. Kasahara,(1979), Operation-compact spaces, *Math. Japonica,* 24, 97-105.
- 4) H. Maki, J. Umehara and T. Noiri, (1996), Every topological space is pre-T1/2 space, *Mem. Fac. Sci. Kochi Univ. (Math),* 17, 33-42.
- 5) H. Maki, H. Ogata, K. Balachandran, P. Sundaram and R. Devi, (2000), The digital line and operation approaches of T1/2 space, *Scientiae Math.,* 3 (2000), 345-352.
- 6) A. S. Mashhour, M. S. Abd El-Monsef and S. N. El-Deep, (1982), On precontinuous and weak pre-continuous mappings, *Proc., Math., Phys., Soc., Egypt,* 53 (1982), 47-53.
- 7) H. Ogata, (1991), Operation on topological spaces and associated topology, *Math. Japonica,* 36, 175-184.
- 8) H. Ogata, (1991), Remarks on some operation-separation axioms, *Bull. Fukuoka Univ. Ed. Part III*, 40, 41-43.
- 9) G. Sai Sundara Krishnan and K. Balachandran, (2006), On a class of γ preopen sets in a topological space, *East Asian Math. J.* 22 (2006), 131-149.
- 10) G. Sai Sundara Krishnan, D. Saravanakumar, M. Ganster and K. Balachandran, (2014), On a class of γ^* -pre-open sets in topological spaces, *Kyungpook Math. J.,* 54, 173-188.
- 11) D. Saravanakumar, M. Ganster, N. Kalaivani and G. Sai Sundara Krishnan, (2015), On (γ^*, β^*) -almost-pre-continuous mappings in topological spaces, *J. Egypt. Math. Soc.,* 15, 180-189.
- 12) D. Saravanakumar and G. Sai Sundara Krishnan, (2012), Operation generalized mappings associated with $\gamma^*_{\rm p}$ -normal spaces and $\gamma^*_{\rm p}$ regular spaces, *Proc. Jang. Math. Soc.,* 15, 423-435.