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ABSTRACT 
  
In this paper, we define the operations mappings in topological spaces such as 

-pre-continuous, -pre-continuous, -pre-open, -pre-open, 
-pre-closed, -pre-closed and -pre-homeomorphism and study 

some their basic properties. 
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INTRODUCTION 
 
Mashhour et al.[6] and Andrijevic[1, 2] introduced the concept of pre-open 

sets and semi-pre-open sets respectively. Kasahara[3] defined the concept of 
operations  on topological spaces. Ogata[7, 8] called the operations  (resp. -
closed set) as -operations (resp. -closed set) and introduced the notion of  

which is the collection of -open sets in topological spaces. Sai Sundara Krishnan 
and Balachandran[9] initiated the concept of -pre-open sets and studied the 
separation axioms using -pre-open sets. Further, they generated a topology  

using -pre-open sets. Sai Sundara Krishnan et al.[10] obtained the concept of -
pre-open sets and -semi-pre-open sets in topological spaces and investigated 
some basic properties. D. Saravanakumar et al.[11, 12] generated the idea of 
operations mappings in topological spaces. 
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In this paper in section 3, we created the concept of operations approaches 
continuous mappings in topological spaces such as -pre-continuous, 

-pre- continuous. Also, we investigated some of their essential properties 
through the -pre-open, -pre-closed and -pre-derived sets. In section 4, we 
obtained the idea of operations open, closed mappings such as -pre-open, 

-pre-closed and studied some of their important properties. Moreover, we 
shows that every -pre-continuous -pre-closed image of - .closed 
set is - .closed. In addition, we proved that every -pre-continuous 

-pre-closed inverse image of - .closed set is - .closed.  
 
PRELIMINARIES 
 
An operation [3] on the topology  is a mapping from  into the power set 

 of  such that    for each    , where  denotes the value of  at . It 
is denoted by :   . A subset  of  is -open[7], if for each   , there 

exists an open neighborhood  such that    and   . Its complement is 
called -closed and   denotes set of all -open sets in . For a subset  of , -

interior[7] of  is  = {    :      and    for some } and -

closure[7] of  is  = {    :      and    for all }. An operation 

 on  is regular[7], if for any open neighborhoods ,  of each   , there exists 
an open neighborhood  of  such that   ; open[7], if for every 

neighborhood  of each   , there exists a -open set  such that    and  
 . A space  is -regular[7], if for each    and for each open neighborhood  

of , there exists an open neighborhood  of  such that   . A subset  of  is 
-dense (resp. -nowhere dense, -pre-open)[10], if  =  (resp. 

 = ,    . The set of all -pre-open sets is denoted by 

.  is -pre-closed[10] in  if and only if  is -pre-open in .  is -

pre-clopen[10], if  is both -pre-open and -pre-closed in . For a subset  of , 
-pre-interior[10] of  is  = {  :    and   }and -pre-

closure[10] of  is  = {  :    and   }. A space  is -

submaximal[10], if every -dense set of  is -open in . A subset  of  is -
.closed if    whenever    and  is -pre-open. A space  is -

pre- [10] if for each distinct points ,   , there exists a    such that 

   and    or    and   . A space  is -pre- [10] if for each distinct 
points ,   , there exists ,    such that   ,   ,    and   

. A space  is -pre- [10] if for each distinct points ,  , there exists ,  

  such that   ,    and  = .  A space  is -pre- [10] if for 

each - .closed set of  is -pre-closed. A mapping  :    is -
irresolute[5] if for any -open set  of  ,  –1( ) is -open in .  

 
Proposition 2.1.[10] Every -pre-closed set is - .closed set. But the 

converse need not be true.  
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Throughout this paper let ,  and  be three topological spaces and 
operations :   , :    and  :    on topologies ,  and  
respectively. Here ,  and  are denotes the family of -pre-

open sets, -pre-open sets and -pre-open sets respectively.  
 

-PRE-CONTINUOUS MAPPINGS 
 

Definition 3.1. A mapping :    is said to be -pre-continuous 
(resp. -pre-continuous) if  is -pre-open in  whenever  is -open 
(resp. -pre-open) in .      

 
Remark 3.1. (i) Every -pre-continuous mapping is -pre-

continuous. But the converse need not be true. 
 
Let  = { , , },  = {1, 2, 3},   = { , , { }, {a, b}, { , }} and  = { , , { }, { , 

}} and define operations      :    and :    by  

 = ( ) { , }

{ , }

cl A if A a c

A if A a c






 for every    and  = 
 

3

3 3

A if A

A if A




 

 for every 

   respectively. 

Define :    by  = 3,  = 2 and   = 1. Then  is -pre-
continuous. Also   = { } is not -pre-open in  for the -pre-open set  
of . Hence  is not -pre-continuous. 

 
(ii) The concepts of -pre-continuous and -irresolute mappings are 

independent.  
 
Let  = { , , },  = {1, 2, 3},   = { , , { }, { , }, { , }} and  = { , , { }, { , 

}} and define operations                   :    and :    by  

 = ( ) { }

{ }

cl A if A c

A if A c






 for every    and  = ( ) {2}

{2}

cl A if A

A if A






 for every  

  respectively.  
Define :    by  = 2,  = 1 and   = 3. Then  is -

irresolute.  Also   = { } is not -pre-open in  for the  -pre-open set  
of . Hence  is not -pre-continuous.  

Also, consider  = { , , },  = {1, 2, 3},   = { , , { }, { , }} and  = { , , 

{ }, { }, { , }} and define operations :    and :    by  

 = 
 

A if c A

A c if c A




 

  for every    and  =   {1}3

{1}

AA if

AA if






 for every  

  respectively.  

Define :    by  = 1,  = 3 and   = 2. Then  is -pre-
continuous. But   = { } is not -open in  for the  -open set  of . By 
Proposition 4.13[7],  is not -irresolute. 
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(iii) Every ( -irresolute mapping is -pre-continuous. But the 
converse need not be true. 

 
Let  = { , , },  = {1, 2, 3},   = { , , { }, { }, { , }, { , }} and  = { , , 

{ }, { , }, { , }} and define operations :    and :    by  

 = { , }

( ) { , }

A if A a b

cl A if A a b






 for every    and  = ( ) {1,3}

{1,3}

cl A if A

A if A






 for every   

 respectively.  

Define :    by  = 1,  = 2 and   = 3. Then  is -pre-
continuous.  Also   = { } is not -open in  for the -open set  of . 
Hence  is not ( -irresolute. 

 
(iv) If ,  are -regular space and -regular space respectively, then the 

concepts of -pre-continuous and pre-continuous mappings coincide. 
 

Theorem 3.1. Let :    be a mapping. Then the following statements are 
equivalent:  

(i)  is -pre-continuous; 
 (ii) for each    and each -open set    containing , there exists  

  such that   ,   ; 

 (iii) the inverse image of each -closed set in  is -pre-closed in . 
 

Proof. (i)  (ii). Let    and  be any -open set of Y containing . Set 
 = , then by Definition 3.1,  is a -pre-open set containing  and  = 

  .  
 

(ii)  (iii). Let  be a -closed set of . Set  = , then  is -open in . 
Let   , by (ii), there exists a -pre-open set  of  containing  such that 

  . Thus, we obtain that        and 

hence   . This shows that  is -pre-open in . 

Hence  =   =  is -pre-closed in .  
 

(iii)  (i). Let  be a -open set in . Then  =  is -closed in . By (iii), 
 is -pre-closed in . Hence  =  =  is -

pre-open in .  
 

Theorem 3.2. Let :    be a mapping and :    be an open 
operation on . Then the following statements are equivalent:  

(i)  is -pre-continuous; 
(ii)    for each   ; 

(iii)    for each   . 

 
Proof. Follows from the Definition 3.1 and Theorem 3.1(iii).  
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Theorem 3.3. Let :    be a ( -irresolute mapping and :    
be an open operation on . Then (i)    for each -open set  in 

; 

(ii)    for each -open set  in . 

 
Proof. Follows from the Remark 3.1 and Theorem 3.2. 
 

Theorem 3.4. If :    is a -pre-continuous mapping and  is a -
open subset of , then the restriction  :    is -pre-continuous, 

where :    is a regular operation on . 
 
Proof. Follows from the Definition 3.1 and Theorem 2.5[10].  
 

Theorem 3.5. Let  be a topological space, :    be a regular 

operation on  and {  :   } a cover of  by -open sets of . A mapping :   

 is -pre-continuous if and only if the restriction  :    is -pre-
continuous for each   . 

 
Proof.  Follows from the Theorems 2.1[10] and 3.4.  
 

Definition 3.2. (i)  Let  be a topological space and :    be an 
operation on . A subset  of a space  is said to be a -pre-neighborhood of a 
point    if there exists a -pre-open set  such that     . 

 
Note that -pre-neighborhood of   may be replaced by -pre-open 

neighborhood of  . 
 

(ii) Let  be a space.    and   . Then  is called a -pre-limit point of 

 if    for any -pre-open set  containing . The set of all -pre-
limit points of  is called a -pre-derived set of  and is denoted by . 

Clearly if    then   . 

 
Remark 3.2. From the Definition 3.2(ii), it follows that  is a -pre-limit 

point of  if and only if   . 

 

Theorem 3.6. For any ,   , the -pre-derived sets have the following 
properties:  

(i)   ; 

(ii)  = ; 

(iii)   ; 

(iv)  = . 

 
Proof. Follows from the Definition 3.2(ii) and Remark 3.2. 
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Theorem 3.7. Let :    be a mapping. Then the following statements are 
equivalent:  

(i)  is -pre-continuous; 
(ii) for each  in , the inverse of every -pre-neighborhood of  is a -

pre-neighborhood of ; 
(iii) for each point  in  and each -pre-neighborhood  of , there is a 

-pre-neighborhood  of  such that   ; 

(iv) for each    and each -pre-open set  of , there is a -pre-open 

set  of  such that   
       ; 
(v)    holds for every subset  of ; 

(vi) for any -pre-closed set  of ,  is -pre-closed in . 
 

Proof. (i)  (ii). Let    and  be a -pre-neighborhood of . By 

Definition 3.2(i), there exists    such that     . This implies that 

    . Since  is -pre-continuous, so   . 

Hence  is a -pre-neighborhood of . 
(ii)  (i). Let   . Put  = . Let   . Then   . Clearly, 

 (being -pre-open) is a -pre-neighborhood of . By (ii),  =  is a -
pre-neighborhood of . Hence by Definition 3.2(i), there exists    such 

that     . This implies that  = . By Theorem 2.1[10],  is -pre-
open in . Therefore  is -pre-continuous. 

(i)  (iii). Let    and  be a -pre-neighborhood of . Then, there 

exists    such that     . It follows that     

. By (i),   . Let  = . Then it follows that  is -

pre-neighborhood of  and  =   B. 

(iii)  (i). Let   . Take  = . Let   . Then   . 

Thus  is a -pre-neighborhood of . By (iii), there exists a -pre-
neighborhood  of  such that   . Thus it follows that      
  = . Since  is a -pre-neighborhood of , which implies that there 

exists a    such that     . This implies that  = . By 

Theorem 2.1[10],  is -pre-open in . Thus  is -pre-continuous.  
(iii)  (iv). We may replaced the -pre-neighborhood of  as -pre-open 

neighborhood of  in condition (iii). Straightforward. 
(iv)  (v). Let     and  be any -pre-open set containing . 

Then, there exists a point    and a -pre-open set  such that    with  

=  and   . Since   , we have that    and hence   

( )    . This implies that   . Therefore, 

we have that    . 

(v)  (vi). Let  be a -pre-closed set in . Then  = . By (v), 

     =  holds. Therefore 
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   and thus  = . Hence  is -

pre-closed in . 
(vi)  (i). Let  be a -pre-open set in . We take  = . Then  is -

pre-closed in . By (iv),  is -pre-closed in . Hence  = 
 =  is -pre-open in . 

 

Theorem 3.8. A mapping :    is -pre-continuous if and only if 

  , for all   . 

 

Proof. Let :    be -pre-continuous. Let    and   . 

Assume that    and let  denote a -pre-neighborhood of . Since  
is -pre-continuous, so by Theorem 3.7(iii), there exists a -pre-

neighborhood  of  such that   . From   , it follows that   

 there exists, therefore, at least one element    such that    and 
  . Since   , we have that   . Thus every -pre-

neighborhood of  contains an element  of  different from . 
Consequently,   . Conversely, suppose that  is not -pre-

continuous. Then by Theorem 3.7(iii), there exists    and a -pre-
neighborhood  of  such that every -pre-neighborhood  of  contains at 
least one element    for which   . Put  = {    :   }. Since  

 , therefore    and hence   . Since    = , 

therefore   . It follows that     

(   , which is a contradiction to the given condition.  

 

Theorem 3.9. Let :    be one-to-one mapping. Then  is -pre-

continuous if and only if   , for all   . 

 

Proof. Let   ,    and  be a -pre-neighborhood of . Since 

 is -pre-continuous, then by Theorem 3.7(iii), there exists a -pre-
neighborhood  of  such that   . But    gives there exists an 

element    such that   . Clearly    and since  is one-to-one, 
  . Thus every -pre-neighborhood  of  contains an element  

of  different from . Consequently,   . Therefore, 

  . Converse follows from the Theorem 3.8. 

 

Theorem 3.10. Let :    be a -pre-continuous and injective. If  is 
-pre-  (resp. -pre- ), then  is -pre-  (resp. -pre- ). 

 
Proof. Suppose  is -pre- . Let  and  be two distinct points of . Then, 

there exists two -pre-open sets  and  such that   ,    and  
= . Since  is -pre-continuous, for  and , there exists two -pre-open 

sets  and  such that    and   ,    and   , implies that 
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 = . Hence  is -pre- . In similar way one can  prove that  is -pre-  
whenever  is  -pre- . 

 
-PRE-OPEN MAPPINGS 

 

Definition 4.1. A mapping :    is said to be -pre-open (resp. 
-pre-closed, -pre-open, -pre-closed) if   is -pre-open 

(resp.  -pre-closed, -pre-open, -pre-closed) in  whenever  is -open 
(resp. -closed, -pre-open, -pre-closed) in . 

 
Remark 4.1. (i) Every -pre-open(closed) mapping is -pre-

open(closed). But the converse need not be true. 
 

Note that if :    is -pre-open(closed) and :    is -
pre- open(closed), then the composition o :    is a -pre- open(closed) 
mapping. 

 

Theorem 4.1. Let :    be a mapping. Then the following statements are 
equivalent:  

(i)  is -pre-open; 

(ii) for each    and each -neighborhood  of , there exists a -pre-open 

set  of  such that     ;  

(iii) for each subset    and each -closed set  of  containing , 

there exists a -pre-closed set  of  such that    and   . 
 

Proof.  (i)  (ii). Suppose that  is a -pre-open mapping. For each   

 and each -neighborhood  of , there exists a -open set  such that     
. Since  is -pre-open,  =  is -pre-open and     .  

(ii)  (i). Let  be a -open set of . For each   , there exists a -pre-
open set  such that     . Therefore,  = {  :   }and 

hence by Theorem 2.1[10],  is -pre-open. This shows that  is -pre-
open. 

(i)  (iii). Let  = . Since   ,   . Since 
 is -pre-open, then  is -pre-closed and  =   

 = .  
(iii)  (i). Let  be any -open set of  and  = . Then  = 

   and  is -closed. By (iii), there exists a -pre-

closed set  of  containing  such that   . Then,  =  

and  = . Therefore,      =  and  is -pre-
open in . This shows that  is -pre-open. 

 

Corollary 4.2. Suppose :    is a -pre-open mapping and :   
 is an open operation on . Then the following properties hold: 
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(i)    for each set   ; 

(ii)     for each -open set  of . 

 
Proof. Follows from the Theorem 4.1(iii).  
 
Theorem 4.3. Let :    be a mapping and :    be an open 

operation on . Then the following conditions are equivalent:  
(i)  is -pre-open; 
(ii)    for   ; 

(iii)    for   . 

 
Proof. Straightforward from the Definition 4.1. 
 

Theorem 4.4. Let :    be a bijective mapping. Then the following 
conditions are equivalent:  

(i) :    is -pre-continuous; 
(ii)  is -pre-open; 
(iii)  is -pre-closed. 
 
Proof. Follows from the Definitions 3.1. and 4.1. 
 

Theorem 4.5. Let :    be a mapping. Then the following statements are 
equivalent:  

(i)  is -pre-open; 
(ii)  for each    and for every    such that   , there exists  

  such that    

        and   ; 
(iii) for each    and for every -pre-neighborhood  of  in , there 

exists a -pre-neighborhood  of  in  such that   ; 
(iv)   , for all   ; 

(v)   , for all   ; 

(vi)   , for all   . 

 

Proof.  (i)  (ii). Let  be a -pre-open set of  in . Then   . Since 
 is -pre-open,  is -pre-open neighborhood of  in . Then by 

Definition 3.2(i), there exists    such that     .  

(ii)  (i). Let    and   . Then by assumption, there exists   

 such that     . Therefore  is a -pre-neighborhood of 

 in  and this implies that  = . Then by Theorem 2.1[10],  

is -pre-open in . Hence  is -pre-open. 
(i)  (iii). Let  be a -pre-neighborhood of   . Then by Definition 3.2(i), 

there exists a -pre-open set  such that     . This implies that   
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  . Since  is a -pre-open mapping,  is -pre-open. Hence 

 =  is a -pre-neighborhood of  and   .  

(iii)  (i). Let    and   . Then  is a -pre-neighborhood of . 

So by (iii), there exists a -pre-neighborhood  of  such that     
. That is,  is a -pre-neighborhood of . Thus  is a -pre-

neighborhood of each of its points. Therefore  is -pre-open. Hence  is 
-pre-open. 

(i)  (iv). Let   . Then, there exists    such that    

 A. So     . Since  is -pre-open, therefore  is -pre-

open in . Hence   . Thus   .  

(iv)  (i).  Let   . Then by (iv),  =   

   or     . This implies that  is -

pre-open in . So  is -pre-open. 
(iv)  (v).  Let  be any subset of . Clearly,  is -pre-open in 

. Also,     . Since  is -pre-open and by 

(iv),   . Therefore   

  . This gives   

.  

(v)  (iv).  Let   . By (v), it is found that     

 . This implies that     

  . Consequently,   , 

for all   .  
(v)  (vi). Let  be any subset of . By (v),   

. Then   . As  

= , therefore    or 

  . Hence   . 

(vi)  (v). Let   . By (vi),   . Then, 

we have that   . Hence 

  . This gives   

.  

 

Theorem 4.6. Let :    and :    be two mappings such that the 

composite mapping o  :    be a -pre-continuous. 
(i) If  is -pre-open injection, then  is -pre-continuous; 
(ii) If  is -pre-open surjection, then  is -pre-continuous.  
 
Proof. Follows from the Definition 4.1. 
 

Definition 4.2. A mapping :    is said to be -pre-
homeomorphism, if  is bijective, -pre-continuous and  is -pre-
continuous. 
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Remark 4.2. From the Definitions 4.1 and 4.2, every bijective, -pre-
continuous and -pre-closed map is -pre-homeomorphism. 

 

Theorem 4.7. Let :    be -pre-homeomorphism. If  is -pre-
, then  is -pre- . 

 
Proof. Let { } be a singleton set of . Then, there exists a point  of  such 

that  = . It follows from the assumption and Theorem 5.5[10] that { } is -
pre-open or -pre-closed. By Theorem 3.7(vi), { } is -pre-open or -pre-closed. 
This implies that  is a -pre-  space. 

 

Theorem 4.8. A mapping :    is -pre-closed if and only if 

  , for every subset  of . 

 

Proof. Suppose  is -pre-closed and let   . Since  is -pre-
closed, therefore  is -pre-closed in . Since   , 

therefore   . Conversely, suppose  is a -pre-closed set 

in . By hypothesis,      = . Hence  = 

. Thus  is -pre-closed set in . This proves that  is -pre-

closed. 
 

Theorem 4.9. A mapping :    is -pre-closed if and only if 

  , for every subset  of . 

 

Proof. Suppose  is -pre-closed and let   . Then  is -

pre-closed in . This implies that   . Then 

   gives   . 

Conversely, suppose that  is a -pre-closed set in . Then by hypothesis, 
  . Since  is -pre-closed,  = . 

Therefore   . Hence  is -pre-closed in . This implies 

that  is -pre-closed. 
 

Theorem 4.10. A mapping :    is a -pre-closed if and only if for 
each subset  of  and each -pre-open set  in  containing , there exists 
a   -pre-open set  in  containing  such that   . 

 

Proof. Let  = . Since   ,   . Since  is 

-pre-closed, then  is -pre-open and =   
 = . Conversely, let  be any -pre-closed set of  and  = . 

Then  =    and  is -pre-open. By the 

hypothesis, there exists a -pre-open set  of  containing  such that   
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. Then  =  and  = . Therefore,      = 
 and  is -pre-closed in . This shows that  is -pre-closed. 

 

Theorem 4.11. Let :    be a bijective mapping. Then the following 
conditions are equivalent:  

(i)  is -pre-closed; 
(ii)  is -pre-open; 
(iii)  is -pre-continuous. 
 
Proof.  Follows from the Definition 4.1 and Theorem 4.5(vi). 
   

Definition 4.3. Let :    be the identity operation. A mapping :   
 is said to be -pre-closed if for any pre-closed set  of ,  is -pre-

closed in . 
 

Theorem 4.12. If  is bijective mapping and :    is -pre-
continuous, then  is -pre-closed. 

 
Proof. Follows from the Definitions 3.1, 4.1 and 4.3. 
 

Theorem 4.13. Let :    be -pre-continuous and -pre-
closed. Then  

(i) for every - .closed set  of , the image  is - .closed; 
(ii) for every - .closed set  of  , the set  is - .closed. 
 
Proof. Follows from the Theorems 2.1[10], 2.9(iii)[10], 3.7(v) and (vi). 
 

Theorem 4.14. Let :    be -pre-continuous and -pre-
closed.  

(i) If  is injective and  is -pre- , then  is -pre- ; 

(ii) If  is surjective and  is -pre- , then  is -pre- . 

Proof. Follows from the Theorem 4.13(i) and (ii). 
 
Theorem 4.15. Suppose  is a regular operation on . Then  is a -pre-  

space. 
Proof. By Proposition 2.9[7], we have that  is a topological space. Now 

to prove  is -pre- , it is enough to show that { } is -pre-open or -pre-

closed. 
Case (i): Suppose { } . Then by Theorem 2.2[10], { } is -pre-open. 

Case(ii): Suppose { }  . Then  =  =   { }. Hence { } 

is -pre-closed. 
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Theorem 4.16. Let  be a -regular space and :    be a regular 
operation on . Then  is -pre-  if and only if  is pre- . 

Proof. By Proposition 2.9[7], we have that  is a topological space. By 

Theorem 2.27[4], it is a pre-  space. Conversely, if  is pre- , then { } is 

pre-open or pre-closed in . Hence it is -pre-open or -pre-closed in  and by 
Theorem 5.5[10], we have that  is a -pre-  space. 

 

Theorem 4.17. Let  be a -regular space and :    be a regular 
operation on . Then  is -pre-  if and only if  is pre- . 

 
Proof. Follows from the Theorem 2.3[10]. 
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