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ABSTRACT 
 
In this article it is shown that if the busy period of a ∞ queue system is 

PME distributed, the respective service time is a random variable with a long-tail 
distribution. The result is obtained through Laplace transforms analysis.  
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INTRODUCTION  
  
In a ∞ queue system,  is the Poisson process arrivals rate,  is the 

mean service time, represents the service time distribution function and 

so  since is the distribution function of a positive random 

variable. The traffic intensity is  and B is the busy period length. 
Note the busy period study importance, for this queuing system, because in 

its operation any customer, when it arrives, finds immediately an available server. 
So the problem is “for how long the servers – and how many servers? – must be 
available? That is: how long is the busy period length?” 

When looking for a family of positive distribution functions,  with tail 
behavior: 

 
,  

 
with mean 1 and manageable Laplace transform, to serve as test in their 

queues, with long-tail service-time distributions, waiting-time tail probabilities 
study (Abate, Choudhury and Whitt, 1994) created the PME-Pareto Mixture of 
Exponentials distributions family. 

Being mandatory a finite mean it must be . So the Pareto distribution 

could be the adequate choice. For this distribution  and its 

density is  As their moments are , 

the squared coefficient of variation is .  
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As this Pareto family does not allow small values and its modifications, that 
would do so, Laplace transforms are not expressible in terms of elementary 
functions, (Abate, Choudhury, Whitt, 1994) proposed a new modification, the PME-
Pareto Mixture of Exponentials distributions family, with 

      (1.1) 

where  is a Pareto distribution probability 

density function. It is long-tail type distribution. The  moments are 

   

It will be supposed that the B probability density function is given by (1.1). 
And through Laplace transform analysis it will be emphasized that in these 
circumstances the service time is a random variable with a long-tail distribution. 

  
THE PME LAPLACE TRANSFORM 
  
Calling  the Laplace transform of a PME with parameter r, see again 

(Abate, Choudhury, Whitt, 1994), 

 
But  

 
If  is the PME with parameter r tail Laplace transform, as , 

 
 
So, after (2.2), 
 

  

  

where  is the nth order derivative of . 
 

Then  

But  
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So  or, equivalently,  

 
 
 

QUEUE BUSY PERIOD TAIL LAPLACE TRANSFORM 
  
Call  the ∞ busy period tail and  the respective Laplace 

transform so, see (Ferreira, Andrade, 2010a), 
 

 
and 
 

 
being  the inverse Laplace transform. 
  
So,  

 

 As  the consequence is that 

this entire happening if  is in fact a probability density function Laplace 

transform, being enough that . 

 
QUEUE BUSY PERIOD WITH PME DISTRIBUTION 

  

Note that in the  nth order derivative,  always appears with a 

positive sign in the numerator and, for  if  is given by (2.1), in that order 
n derivative the denominator is . It is enough to be attentive to the 
quotient derivative expression and note that . 

So, after (2.4), it is concluded: 
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- If there is a service distribution such that the ∞ queue busy period is 
distributed as a PME distribution with parameter r, the service equilibrium 
distribution moments of order greater than  centered in the origin, are 
infinite.  

Note that 
- The service equilibrium distribution, with these moments, is a long-tail 

distribution, see again (Abate, Choudhury, Whitt, 1994), 

- As  is the ∞ queue busy period equilibrium distribution Laplace 

transform it is also concluded that if this has moments of order greater 
than , infinite, the same happens with the service time equilibrium 
distribution, which is: they are both long-tail distributions. 

  
CONCLUDING REMARKS 
  
As it is stated in (Abate, Choudhury, Whitt, 1994) the PME are long-tail 

distributions. So it is checked in this work that there is an uncontested association 
between long-tail service distributions and long-tail busy period distributions for 
the ∞ queue, as it was shown in (Ferreira, Andrade, 2012). 

The PMEs were introduced in (Abate, Choudhury, Whitt, 1994). There they 
were a tool to investigate properties of waiting times tail probabilities in queues 
with long-tail service-time distributions. For this investigation the authors 
developed algorithms for computing the waiting time distribution by Laplace 
transform inversion when the Laplace transforms of the inter-arrival time and 
service time distributions are known. The procedure here trailed is similar. 
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