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ABSTRACT 

 

In the theory and applications of queuing systems, transient probabilities play a 

key role. Often, due to the difficulty of their calculation they are replaced by the 

stationary probabilities. In the case of systems, those calculations are much 

friendlier than usual. We present in this work formulas for the transient probabilities of 

the system, where are considered service times with exponential distribution, 

showing that it is also possible to calculate them with initial conditions different from 

those usually considered. 
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INTRODUCTION 

  

In the  queue, customers arrive according to a Poisson process at rate , 

upon its arrival receive immediately a service with time length d. f.  and mean . 

The traffic intensity is = , see for instance [7]. 

Call  the number of occupied servers, at time  in the  queue. 

Define the transient probabilities  as 

 
 So, see [7], 

 
The stationary probabilities are the limit probabilities and so  

 
since  because  is a positive distribution d. f.. 

As it happens for any queue, in the  queue activity there is a sequence of 

idle and busy periods. For this queue the study of the busy period length distribution is 

very important since, as it is part of its definition, a customer must find immediately an 

available server upon its arrival. So, it is important for the manager to know how many, 

and how long, servers must be in prevention, see [1] and [5, 6]. 
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Define now 

 
meaning that the time origin is considered in an instant at which a 

customer arrives at the  system finding it empty, that is: in the beginning of a 

busy period. At the instant  it may occur: 

- Either the customer that arrived at the initial instant abandoned the system, with 

probability , or goes on being served, with probability , 

- The other servers, that were unoccupied at the time origin, are either unoccupied 

or occupied with 1,2,… customers, with probability  given 

by (1.1). 

As both systems, the one of the initial customer and the other of the initially 

unoccupied servers, are independent, consequently: 
 

 
 

The stationary probabilities are also 

 

 
 

THE  CASE 

 

For the  queue, that is exponential service times, (1.1) becomes:  

 

 
and (1.4) 

 
 

owing to the exponential distribution lack of memory, that allows to consider as 

initial instant anyone at which there is only one customer in the system, not necessarily 

demanding it is the beginning of a busy period. 

Analogously to the procedure followed to deduce (1.4), considering two 

independent subsystems, one with the clients present at the initial instant and another 

with the infinite servers vacated at that instant, it is concluded, taking into account the 

memory shortage of the exponential distribution that for the  queue: 
 

I

 I . 



 
 

Acta Scientiae et Intellectus  ISSN 2410-9738 (Print), 2519-1896 (Online) 

34Vol.4. No.6 (2018) www.actaint.com 

 
 

In particular, for  : 

 
 

Theorem 2.1  

For the  queue: 

i)  

  is an increasing function, 

ii)  

a) is an increasing function in  

is a decreasing function in  

c) The  maximum is  

 
being 

 
iii) m=0 

  is a decreasing function. 

Dem: It is enough to have in mind that   

. 

Obs: If always can be normalized in order to behave as 

d.f.  

  

CONCLUSIONS 

 

In this text, the transient probabilities for the  queue are reviewed, and 

clarified for the  queue. Based on this are determined transient probabilities for 

the  system, with initial conditions different from the usual, where play a key 

role the exponential distribution lack of memory.  
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