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ABSTRACT

In this paper we discussed some explicit forms for conditional expectations of
record values. We study the necessary and sufficient conditions such that the
conditional expectations of record values hold for some distribution functions.
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INTRODUCTION

Record values play an important role in many aspects of daily life as well as
in many statistical applications. Often the interest is focused in observing new
records and in recording them: for example, world or Olympic records in sport.

Record values are used in reliability theory. Furthermore, these statistics are
closely connected with the occurrences times of some corresponding non
homogeneous Poisson process used in shock models. The statistical study of
record values started with Chandler [5], the theory of record values was
formulated as a model for successive extremes in a sequence of independently and
identically random variables. Some examples of record values were given in Feller
[7] with respect to gambling problems. The asymptotic theory of records was
discussed in Resnick [21]. Theory of record values and its distributional properties
have been broadly studied in the literature, for example, see, Ahsanullah [2],
Arnold et al. [3], Nevzorov [18] and Kamps [12] for reviews on various
developments in the area of records and references therein.

Suppose that X;,X,,.. is a sequence of independent and identically
distributed (i.i.d.) random variables with distribution function (df) F(x) and
probability density function (pdf) f(x). Let ¥,, = max(min) {X;, X5, ..., X,,} forn > 1.
We say X; is an upper (lower) record value of {X,,n > 1}, if ¥; > (<)Y;_;,j > 1. By
definition, X, is a lower as well as an upper record value. The upper records can be
transformed to lower records by replacing the original sequence of {X;} by
{-X;,j = 1} or (if P(X; > 0) = 1 for all j) by {1/X;,j = 1}; the lower record values
of this sequence will correspond to the upper record values of the original
sequence.
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Let Y, (1), Y (2) -+ Yi(ny D€ the first n lower record values from a population
whose pdf f(x) and cdf F(x). Then, the pdf of the Y, ), m = 1,2, ... is given by (see
Ahsanullah [2] and Arnold et al. [3])

fXL(m)(x) = ﬁ{—logF(x)}m‘l flx)m=>1—00<x <0, (1)

where T'(.) is a gamma function, and the joint pdf of Xipmy and X,
(1 < m < mn),isgiven by

-
r(m) r(n-m)

fYL(m),YL(n) (x,y) = {—logp(x)}m—l {logF(x) — lOgF(y)}n—m—l x

%f(y),—oo<y<x<oo. 2)

Now, let Zy(1y, Zy(zy, - Zyny b€ the first n upper record values, then, the pdf
and the joint pdf of Zy (), and (Zymy, Zyeny), m < n respectively, are given by (see
Ahsanullah [2] and Arnold et al. [3])

fzu(m)(x) = ﬁ{—logf(x)}m_l flx)m=>1 -0 <x <o, (3)

_r
r(m) r(n-m)

fZU(m)‘ZU(n)(x,y) = {—logf(x)}m_l {logf(x) _ logf(y}n_m_l 9

@f(y),—oo<x<y<oo. 4

F(x)

Characterization of distributions through conditional expectation of record
values have been considered among others by Nagaraja [17], Franco and Ruiz [8,
9], Lopez-Blazquez and Moreno-Rebollo [15], Abu-Youssef [1], Dembinska and
Wesolowski [6], Ragab [20], Athar et al. [4], Khan and Alzaid [13] and Wu [22].
Khan et al. [14] characterized a family of continuous distributions through
difference of two conditional expectations of record values. Malinowska and Szynal
[16] assume that the common random variable X is an absolutely continuous
random variable concentrated on the interval (a, 8) with F(x) <1 for x € (a, B),
F(a) =0and F(B) = 1.

For a given monotonic and differentiable function g on («, 8), we write

E[gC0)IX < ] =$f: g@) fwdu, (%)
ELgUOIX = ] === 7 9@ fwdu, (6)
FGx)=[a+bec9®]" becd=0, (7
F)=[a+bec9®]" bcd=o0. (8)

In this paper, we have characterized two general forms of distributions
through conditional expectation of p-th power of difference of functions of two
record values (Theorem 1 on lower record values and Theorem 2 on upper record
values).

50 | Vol.2. No.1 (2016) www.actaint.com



Acta Scientiae et Intellectus ISSN: 2410-9738

Theorem 1:

Consider X to be an absolutely continuous random variable with cdf F(x) and
probability density function (pdf) f(x) on the support (a, ). Then, for two lower
record values of mand n,

E({g(Yimy) = g(YL(m))}plyL(m) =x)= Smnp = (Zii?r([;in,i) fora<y<ux<p, )]

If and only if
F(x) =be 9™ pc=0. (10)
Proof

To prove the necessary part, from (1) and (2), we have forn > m + 1,
x n-m-1
Emnr = T e 190 — g0 {log (R} LB 4y (11)

Let, using (10)
w=g(y)—gx), {g(y)—g()} =wp
cnm _ I'(p+n-m)
T Pr(n-m)"

f°° wptn-m-1 g—cw g4

Smanp = Tty o

Then the necessary condition is proved, to prove the sufficiency condition, it
is clear from (11) that

FG) ump = ——— [1g®) — g {1ogZ2"™ " £G)ay. (12)

F(n m) “a F(y)

Differentiating both sides in (12) with respect to x, we get

(n-m-1) f(x) FW ™™ fO)
£ S = f w0 -gw¥ s (755)] Fg
g F(x) . FOON' ™™ f()
n - f 90) - g0¥* fiog <F(y))} oo
We can obtain (using 11) that
f(x) fm,n,p = f(x) fm,n—l,P -Dp g’(x) F(x) fm,n,p—l
and from (9)
p g’(x) fm,n,p—l = %( fm,n—l,p - fmnp)
— _pf®) Iptn-m-1) _ _ pf) 3
F(x) cPT(n-m) cF(x) °>mnp-l
which implies

F(x)'
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hence, the theorem is proved.
The case when b = 1, which is the special case of theorem 1, have been
treated in Noor and Athar [19]

Theorem 2:

Consider X to be an absolutely continuous random variable with distribution
function F(x) and probability density function f(x) on the support (a,). Then, for
two values of mand n,

E ({9 (XU<n)) -9 (XU<m))}p |XU<m) ) Smnp = Z;prt: r:)) fora<x<ys<p (14)
if and only if
FOx)=be9®, bc+0. (15)

Proof
To prove the necessary part, from (3) and (4) we have for n= m+1

Smanp = F(n m) °x fﬁ{g(y) 9ty {ln (ig;)}s_r 1 ﬁg; dy. (16)

Let (using (15))

~0 () 16— s0aw = (2

_ 1 o (w P 1. —w _ T(p+n-m)
fr,s,p T I'(n-m) fO (c) w e dw = pPr(n-m)’

this proves the necessary condition. To prove the sufficiency condition, it is
clear from (16) that

Fmnn = rmes [0 0) — g Y {1 (B2} ) dy, (17)

F(n m)vx

After differentiating both sides in (17) with respect to x, we get

Fmny = S i (3) — g {1n (B2)) L2 4

r(n-m) F(x)
P JOIFC) B o1 [ (FON " r)
e 90— g} {ln(F(y))} o W

We can obtain (using (16)) that

FOemnp = FOEmirnp +P GOIFO)Emnp-1,
and from (14)

f) _ pfx)I(p+n-m-1) _ p f(x)
F(x) (fm,n,p - fm+1,n,p) - FG) cPh(n-m) - cF(x) fmnp 1

P GO mnp-1 =

which implies
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f(x)
cF(x)'

g(x) = (18)

hence, the Theorem is proved.
When b = 1,which treated by Noor and Athar [19].

CHARACTERIZATIONS

In this subsection, characterizations based on truncated moments of the

given function g(x) are presented.

Theorem 3:
Referring to (5) and (7), then

E[gCO)IX < ] =g(x) + = {1 2F1(L d;d + 1; [F(")]a}, a<x<p, (19)
where ¢ # 0,d > 0 and 2F1(.,.;.;.) isahypergeometric function.
Proof
From (5) and (7), we get

f: g@) fwydu =F(x) {g(x) +— } Ef e9M f(u)d u. (20)
Lett = [F(u)]d then

J7 ee9 fluydu =2 [l — (“’("”‘* )] Lt

= 200 oF1(Ldid + 1; [F"‘)]d), (21)

I'(c)
I'(b)I(c-b) “0

Gradstein and Ryzhyk [10] in Page 995.

Now, from (20) and (21), we get (19).

Whend = 1, the F(x) = a + b e=¢9*) which studied by Hamedani et al. [11].
The following Table 1 gives some examples of (7) distributions.

where 2Fi(a, b;c;z) =

f th=1(1 — t)¢~P-1 (1 - z)~4dt, see

Table 1. Examples of (7)

Distribution F(x) g(x) a b c d
Weibull 1-— e—pr' x>0 xP 1 -1 0 1
Pareto of the first kind 1-PxPx>21 In x 1 -AP p 1
Burr XII 1-(1+6xP)* x>0 In(1+6 xP) 1 -1 ) 1
Rayleigh 1—e 0% x>0 x2 1 -1 0 1
Lomax 1-(1+60x)*x=>0 In (1+ 0x) 1 -1 A 1
Inverse Weibull e " x>0 x7P 0 1 0 1
. X\P X
Power function (I) o<x< 2 In (i) 0 1 p 1
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x—p 1
Rectangular (/1 — ﬁ) B<x< 21 In(x—p) 0 =% -1 1
Ty a1 (220 (X9 11

Cauchy o +H-tan ( N ),—oo<x<oo ln(tan 1(7)) > - 1 1
Pareto of the second 1-(1+x)1x>0 In(1+x)

. 1 -1 A 1
kind
Exponential 1—e x>0 x 1 -1 A 1
Inverse Exponential e—% x>0 1 0 1 y 1

! X
Gumbel e ¢ _p<x<w e F&x-A) 0 1 1 1
Kumaraswamy 1-1-xP)*0<x<1 In (1— xP) 1 -1 - 1
Exponentiated 1-A—-e*%% x>0 In(1—e™*"%) 1 1 _o 1
Frechet
i el _(X=k
Exponenfated o] —mr <o B (1] 1 1]
Exponentiated @A-e?f x>0 In(1+e7*%) 0 1 -6
exponential
Dagum [1+ )1 x>0 log ) o I B
X X

Log-Logistic [1+E™1 x>0 log (3) 1 1 p | -1
Burr X (Exponentiated a- e—l?xz)a' x>0 x2 1 -1 B a
Rayleigh)
Exponentiated (1 — e hPya x>0 xP 1 -1 B a
Weibull

Theorem 4:
Consider X to be an absolutely continuous random variables with distribution
function F(x) and xe (o, B). Referring to (6) and (8), then

E[gX)IX = x] =g(x) +${1 +2F1(1,d;d + 1;[F((+)]a , a<x<p, (22)
where ¢ # 0,d > 0 and 2F1(.,.;.;.) isa hypergeometric function.
Proof

From (6) and (8), we can get, as before,

[} 9 fadu=F() {g@) + =)+ [7 e9® fwydu

bcd "

1
[Fe)a

a

— b_
=F(x) {g(x) + é} +$ 2F1(1,d;d +1; ),

then (22) is satisfied.
Whend = 1,the F(x) = a + b e~¢9®) which studied by Hamedani et al. [11].
The following Table 2 gives examples of (8) distributions.

Table 2. Examples of (8)

Distribution F(x) g(x) a b c d

Weibull e~0x?, x>0 xP 0 1 0 1
X

Pareto of the first kind APx7P x> lnT 0 1 p 1

Burr Xl (1+6xP) x>0 In x 1 0 —-p .y

Rayleigh e 9" x>0 x? 0 1 0 1

Lomax Q+6x)*x>0 Inx 1 1 -6 -2
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Inverse Weibull 1—e 7P x>0 xP 1 -1 0 1
. xX\P X
Power function 1- (I) O<x< 2 In (1) 1 —p 1
Rectangular 1 x= B <x< 1 In( ) 1 1 1 =
9 _(A—[})'ﬁ * nk—p -1
1 1 x—0 x—0 1 1
T (50 osree [ O] 5[] |
Yy 5 7Ttan =) 0<x <o In(tan 7 > -
Pareto of the second kind A+x)*x>0 In(1+x) 0 1 A 1
Exponential e % x>0 x 0 1 2 1
Inverse Exponential 1— e—f—C x>0 1 1 -1 A 1
! X
Gumbel 1—e¢’? _w<x<w e B2 1] -1 1 1
Kumaraswamy Q1-xP) o< x<1 In(1— xP) 1 -1 -p 2
Exponentiated Frechet 1=—e*% x>0 x ¢ 1 -1 1 0
e [ _(X=t - —
Exponentiated Gumbel 1-— [1 —e¢ ( ”M)] In[l-—e (5 )] 1 1 a 1
Exponentiated exponential 1-(1—-e™)? x>0 In[l—e*] 1 1 -0 1
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