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ABSTRACT 
 
The problems arising when the moments of service time distributions, for which 

the M|G|∞ queue system busy period and busy cycle become very easy to study, are 
presented and it is shown how to overcome them. The busy cycle renewal function 
and the “peakedness” and the “modified peakedness” for the M|G|∞ busy period and 
busy cycle in the case of those service time distributions are also computed. 
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INTRODUCTION 
  

When, in the M|G|∞ queue system, the service time length is a random 
variable with a distribution function belonging to the collection  
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  (1.1), 

 
the busy period length probability distribution is exponential with an atom at 

the origin and the busy cycle length probability distribution is the mixture of two 
exponential distributions, see Ferreira (2005) and (Ferreira and Andrade, 2009). 
But although it is so easy to study the busy period and the busy cycle in this 
situation it is very difficult to compute the service time moments. 

Some results, precisely about the moment’s computation of random variables 
with distribution functions given by this collection are given. 

In the end are presented formulae that give the busy cycle renewal function 
and the “peakedness” and the “modified peakedness” to the busy period and the 
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busy cycle of the M|G|∞ system for those service time distributions, see Ferreira 
(2004, 2013,2013a). 

This work is built on the presented in Ferreira (2007) which is so corrected, 
generalized and updated. 

 
MOMENTS COMPUTATION 
 

Be   0, ttG  a distribution function and  
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tdG
tg  .  

The differential equation  
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 10  p  (   , being   the mean of  tG ) has (1.1) 

as solution (see Ferreira (2005)).  
If, in (1.1),  tGi  is the solution associated to i , 4,3,2,1i  it is easy to see 

that 
 

   
   

   
    23

13

14

24

..
23

13

14

24


































ee

ee

ee

ee

tGtG

tGtG

tGtG

tGtG
    (2.1) 

 
as it had to happen since it is a Riccati equation. 
 And computing, 
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as it had to be because are considered positive random variable. 
The density associated to  tG  given by (1.1) is 
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So, 
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And, 

 


















































 dt

eee

e
t

t
p

p

t
p

p

n

2

1

1

0

1
























 dtete
t

p

p

n 1

0

2




  






























 ,

1

!

1

2

n

p

p

n

p

p

e
. 

 
So, calling   the random variable corresponding to  tG : 
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Notes: 

- The expression (2.3), giving bounds for  n , guarantees its existence, 

- For 1n  the expression (2.3) is useless since    . Note, curiously, 

that the upper bound is 


 1e
, the M|G|∞ system busy period mean 

value, 

- For 2n , subtracting to both bounds 2 , it is possible get from 
expression (2.3) bounds for  VAR , 

- For   ,...,2,1,0,  nn  evidently. 

 
See, however, that (1.1) can be written like:  
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  (2.4) 

 
and, for 2log , 
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After (2.5) it is easy to derive the   Laplace Transform for 2log . And, so,  

 
- For 2log  
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Notes: 
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- For 2n  only a finite number of parcels can be considered in the infinite 

sum. Calling   this number, to get an error lesser than   it must be fulfilled 
simultaneously  
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So it is evident now that this distributions collection moment’s computation 
is a complex task. This was already true for the study of Ferreira (1998) where the 
results presented are a particular situation of these ones for 0p . 

To consider the approximation  
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may be helpful since   ,...2,1,lim 


nnn

m
m

 (Ferreira and Andrade, 2012c) 

that allow the moments numerical computation. 
 
BUSY CYCLE RENEWAL FUNCTION COMPUTATION 
 
The busy cycle (an idle period followed by a busy period) renewal function 

value of the M|G|∞ queue, at t , gives the mean number of busy periods that begin 
in  t,0 , see Ferreira (2004). If the service time is a random variable with 

distribution function given by a member of the collection (1.1), calling the value of 
the renewal function at t   tR : 
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For 0p  it is obtained the result presented in Ferreira (2004). 

 
THE “PEAKEDNESS” AND THE “MODIFIED PEAKEDNESS” FOR THE M|G|∞  

QUEUE BUSY PERIOD AND BUSY CYCLE 
 
The M|G|∞ queue busy period “peakedness” is the Laplace Transform of its 

length at 


1 , Ferreira (2013,2013a). It is a parameter that characterizes the busy 

period distribution length and contains information about all its moments. For the 
collection of service distributions (1.1) the “peakedness”, named pi , is 
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In Ferreira (2013,2013a) is also introduced another measure, the “modified 

peakedness” got after the “peak” taking out the terms that are permanent for the 
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busy period in different service distributions and putting over the common part. 
Calling it qi :  
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and so, for the distributions given by collection (1.1): 
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For the busy cycle of the M|G|∞ queue, analogously, it may be defined the 
“peakedness”, Ferreira (2013a)), now called ip  , and for the service distributions 

given by the collection (1.1) it is 
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and the “modified peakedness”, that now called iq  , given by 1
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and for the service distributions given by the collection (1.1) it is 
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