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ABSTRACT

The problems arising when the moments of service time distributions, for which
the M|G[oo queue system busy period and busy cycle become very easy to study, are
presented and it is shown how to overcome them. The busy cycle renewal function
and the “peakedness” and the “modified peakedness” for the M[G[o0 busy period and
busy cycle in the case of those service time distributions are also computed.
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INTRODUCTION

When, in the M|G|oo queue system, the service time length is a random
variable with a distribution function belonging to the collection
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the busy period length probability distribution is exponential with an atom at
the origin and the busy cycle length probability distribution is the mixture of two
exponential distributions, see Ferreira (2005) and (Ferreira and Andrade, 2009).
But although it is so easy to study the busy period and the busy cycle in this
situation it is very difficult to compute the service time moments.

Some results, precisely about the moment’s computation of random variables
with distribution functions given by this collection are given.

In the end are presented formulae that give the busy cycle renewal function
and the “peakedness” and the “modified peakedness” to the busy period and the

14 | Vol.3. No.1 (2017) www.actaint.com



Acta Scientiae et Intellectus ISSN 2410-9738 (Print), 2519-1896 (Online)

busy cycle of the M|G|oo system for those service time distributions, see Ferreira
(2004, 2013,2013a).

This work is built on the presented in Ferreira (2007) which is so corrected,
generalized and updated.

MOMENTS COMPUTATION
e . dG(t)
Be G(t)t >0 a distribution function and g(t) = TR
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as solution (see Ferreira (2005)).
If, in (1.1), Gi(t) is the solution associated to p;, i =1,2,3,4 it is easy to see
that
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as it had to happen since it is a Riccati equation.
And computing,
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as it had to be because are considered positive random variable.
The density associated to G(t) given by (1.1) is
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So, calling T the random variable corresponding to G(t):
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Notes:

- The expression (2.3), giving bounds for E[Tn ], guarantees its existence,
- For n=1 the expression (2.3) is useless since E[T]= « . Note, curiously,

p_

that the upper bound is © , the M|G|oo system busy period mean

value,

- For n =2, subtracting to both bounds a?itis possible get from
expression (2.3) bounds for VAR[T],

- For B=-A,E[T"]|=0,n=12,.., evidently.
See, however, that (1.1) can be written like:
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and, for p <log2,
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After (2.5) it is easy to derive the T Laplace Transform for p < l0g2. And, so,
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- For n>2 only a finite number of parcels can be considered in the infinite
sum. Calling M this number, to get an error lesser than ¢ it must be fulfilled
simultaneously

aM>——— -1,
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So it is evident now that this distributions collection moment’s computation
is a complex task. This was already true for the study of Ferreira (1998) where the
results presented are a particular situation of these ones for p =0.

To consider the approximation

e =34 o &) o[ K] 1< Ao petnaszn.

ket um m

may be helpful since limE; = E[Tn ] n=12,... (Ferreira and Andrade, 2012c)

that allow the moments numerical computation.
BUSY CYCLE RENEWAL FUNCTION COMPUTATION

The busy cycle (an idle period followed by a busy period) renewal function
value of the M|G|oo queue, at t, gives the mean number of busy periods that begin
in [0,t], see Ferreira (2004). If the service time is a random variable with
distribution function given by a member of the collection (1.1), calling the value of
the renewal function at t R(t):

- /1+/1p+'6t
R(t):ep(1+/1t)+(1—ep)%e[ 2 +(1_ep)%,_ﬂg
sﬂsl(l_—pep),os p<1 (3.1).
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For p =0 itis obtained the result presented in Ferreira (2004).

THE “PEAKEDNESS” AND THE “MODIFIED PEAKEDNESS” FOR THE M|G|co
QUEUE BUSY PERIOD AND BUSY CYCLE

The M|G|oo queue busy period “peakedness” is the Laplace Transform of its
length at % , Ferreira (2013,2013a). It is a parameter that characterizes the busy

period distribution length and contains information about all its moments. For the
collection of service distributions (1.1) the “peakedness”, named pi, is

_e(A+plp+)-Ip-p All—pe’)
M= e (p+ap)+1-p) AP e” 1 0=<p<l (4.1).

In Ferreira (2013,2013a) is also introduced another measure, the “modified
peakedness” got after the “peak” taking out the terms that are permanent for the
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busy period in different service distributions and putting over the common part.
Calling it qi:
: : P
I=pl——-
qi=p "~ p_1

+1

and so, for the distributions given by collection (1.1):
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For the busy cycle of the M|G|oo queue, analogously, it may be defined the
“peakedness”, Ferreira (2013a)), now called pi’, and for the service distributions

given by the collection (1.1) itis
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and the “modified peakedness”, that now called qi’, given by pi’L +1,

e’ —p
and for the service distributions given by the collection (1.1) itis
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(4.4).
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