Archive

Volume 2, Number 2 / April issue 2016
Manuel Alberto M. Ferreira
Optimization tools in management and finance
Abstract

Through this paper, the most commonly used in management and finance optimization problems mathematical tools are presented, in a combined coherent way. The respective mathematical fundaments are synthetically outlined and the resolution methods are briefly described, hopping that this text functions as a manual in these matters.
Keywords: Management, Mathematics, Optimization, Convex Programming

Cite this article:
Manuel Alberto M. Ferreira. Optimization tools in management and finance. Acta Scientiae et Intellectus, 2(2)2016, 45-59.


REFERENCES

  1. Aubin, J. P.: Applied Functional Analysis. John Wiley & Sons Inc., New York, 1979.
  2. Balakrishnan, A. V.: Applied Functional Analysis. Springer-Verlag New York Inc., New York, 1981.
  3. Brézis, H. : Analyse Fonctionelle (Théorie et Applications). Masson, Paris, 1983.
  4. Ferreira, M.A.M.: Aplicação dos Teoremas de Separação na Programação Convexa em Espaços de Hilbert. Revista de Gestão, I (2), pp 41-44, 1986
  5. Ferreira, M.A.M.: The Minimax Theorem as Hahn-Banach Theorem Consequence. Acta Scientiae et Intellectus, 1(1), pp 58-65, 2015.
  6. Ferreira, M.A.M. : The Hahn-Banach Theorem in Convex Programming.14th Conferece on Applied Mathematics, Proceedings, pp 283-291. APLIMAT 2015, Bratislava.
  7. Ferreira, M.A.M. and Amaral, I.:Programação Matemática. Edições Sílabo, Lisboa, 1995.
  8. Ferreira, M.A.M., Andrade, M. and Matos, M. C.: Separation Theorems in Hilbert Spaces Convex Programming. Journal of Mathematics and Technology, 1 (5), pp 20-27, 2010.
  9. Ferreira, M.A.M. and Andrade, M.: Management Optimization Problems. International Journal of Academic Research, Vol. 3 (2, Part III), pp 647-654, 2011.
  10. Ferreira, M.A.M. and Andrade, M.: Hahn-Banach Theorem for Normed Spaces. International Journal of Academic Research, 3 (4, Part I), pp 13-16, 2011a.
  11. Ferreira, M.A.M. and Andrade, M.: Riesz Representation Theorem in Hilbert Spaces Separation Theorems. International Journal of Academic Research, 3 (6, II Part), pp 302-304, 2011b.
  12. Ferreira, M.A.M. and Andrade, M.: Separation of a Vector Space Convex Parts. International Journal of Academic Research, 4 (2), pp 5-8, 2012.
  13. Ferreira, M.A.M. and Filipe, J. A.: Convex Sets Strict Separation in Hilbert Spaces. Applied Mathematical Sciences, 8 (61-64), 3155-3160, 2014. http://dx.doi.org/10.12988/ams.2014.44257
  14. Ferreira, M.A.M. and Matos, M. C. P.:Convex Sets Strict Separation in the Minimax Theorem. Applied Mathematical Sciences, 8 (33-36), 1781-1787, 2014. http://dx.doi.org/10.12988/ams.2014.4271
  15. Ferreira, M.A.M., Andrade, M. and Filipe, J. A.: Kuhn-Tucker’s Theorem for inequalities in Infinite Dimension. Journal of Mathematics and Technology, 3 (1), pp 57-60, 2012.
  16. Ferreira, M.A.M., Andrade, M. and Filipe, J. A.: Weak Convergence in Hilbert Spaces. International Journal of Academic Research, 4 (4), pp 34-36, 2012.
  17. Ferreira, M.A.M., Andrade, M. and Filipe, J. A.: The Concept of Weak Convergence in Hilbert Spaces.12th Conference on Applied Mathematics, APLIMAT 2013, Proceedings. 12th Conference on Applied Mathematics, APLIMAT 2013; Bratislava; Slovakia; 5 February 2013 through 7 February 2013.
  18. Ferreira, M.A.M., Andrade, M, Matos, M. C., Filipe, J. A. and Coelho, M.: Minimax Theorem and Nash Equilibrium. International Journal of Latest Trends in Finance & Economic Sciences, 2(1), pp 36-40, 2012.
  19. Kakutani, S.: A Generalization of Brouwer’s Fixed Point Theorem. Duke Mathematics Journal, 8, 1941.
  20. Kantorovich, L. V. and Akilov, G. P.: Functional Analysis. Pergamon Press, Oxford, 1982.
  21. Kolmogorov, A. N. and Fomin, S. V.: Elementos da Teoria das Funções e de Análise Funcional. Editora Mir, 1982.
  22. Matos, M. C. and Ferreira, M.A.M.: Game Representation -Code Form. Lecture Notes in Economics and Mathematical Systems; 567, pp 321-334, 2006.
  23. Matos, M. C., Ferreira, M.A.M. and Andrade, M.: Code Form Game. International Journal of Academic Research, 2(1), pp 135-141, 2010.
  24. Matos, M. C., Ferreira, M.A.M., Filipe, J. A. and Coelho, M.: Prisonner`s Dilemma: Cooperation or Treason?. PJQM-Portuguese Journal of Quantitative Methods, Vol. 1(1), pp 43-52, 2010.
  25. Nash, J.: Non-Cooperative Games. Annals of Mathematics, 54, 1951.
  26. Neumann, J. von and Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton, New Jersey, 1947.
  27. Neumann, J. von and Morgenstern, O.: Theory of Games and Economic Behavior. John Wiley & Sons Inc., New York, 1967.
  28. Royden, H. L.: Real Analysis. Mac Milan Publishing Co. Inc, New York, 1968.