Archive

Volume 3, Number 6 / December issue 2017
Manuel Alberto M. Ferreira, José António Filipe
The “Drop of Honey Effect” metaphor in chaos theory
Abstract

Chaos theory resulted in great part from natural scientists’ outcomes in non-linear dynamics area. The prominence of associated models has increased in the last decades, due the non-linear systems temporal evolution study. Consequently, chaos is one of the concepts that most quickly have been expanded in what research topics concerns. In case of unstable relationships in non-linear systems, chaos theory aims to understand and explain this kind of unpredictable aspects of nature, social life, the uncertainties, the nonlinearities, the disorders and confusions. Scientifically it represents a disarray connection, but basically it involves much more. The close association between change and time seems essential to understand what happens in the fundamentals of chaos theory. This theory got a central role in the explanation of a lot of phenomena. The relevance of these theories has been well recognized in the clarification of social phenomena and has permitted new advances in the study of social systems. Chaos theory has also been applied, particularly in the context of politics, in this area. This work goal is to make a reflection on chaos theory – and also on dynamical systems and theory of complexity – in terms of the understanding of political issues, considering some events in the political context and also considering the macro-strategic ideas of states positioning in the international stage. In this line of reasoning the "Drop of Honey Effect" metaphor is presented, somewhat analogous to that of "Butterfly Effect", and the idea that it is better suited to portray social phenomena, in particular political phenomena, is defended.
Keywords: Chaos Theory, Politics, “Butterfly Effect”, “Drop of Honey Effect”

Cite this article:
Manuel Alberto M. Ferreira, José António Filipe. The “Drop of Honey Effect” metaphor in chaos theory. Acta Scientiae et Intellectus, 3(6)2017, 27-42.


REFERENCES

  1. Bergé, P., Y. Pomeau, C. V. (1984), Order within chaos. New York: John Wiley.
  2. Berliner, L. M. (1992), Statistics, Probability and Chaos. Statistical Science, 7 (1), 69- 122.
  3. Bjorndal, T. (1987), Production economics and optimal stock size in a North Atlantic fishery. Scandinavian Journal of Economics, 89 (2), 145-164.
  4. Bjorndal, T. and Conrad, J. (1987), The dynamics of an open access fishery. Canadian Journal of Economics, 20(1), 74-85.
  5. Campbell, D. K., Mayer-Kress, G. (1997), Chaos and politics: Applications of nonlinear dynamics to socio-political issues. In Grebogi, C. and Yorke, J. A., The Impact of Chaos on Science and Society. United Nations University Press.
  6. Capra, F. (1996), The web of life: a new scientific understanding of living systems. New York: Anchor Books.
  7. Clark, C. W. (1974), Possible effects of schooling on the dynamics of exploited fish populations. Journal du Conseil Internatinal pour L'Ex-ploration de la Mer, 36 (1), 7-14.
  8. Erçetin, S. S., Banerjee, S. (2014), Chaos and Complexity Theory in World Politics. IGI Global. Hershey.
  9. Erçetin, S. S. (2016), Applied Chaos and Complexity Theory in Education. IGI Global. Hershey.
  10. Farazmand, A. (2003), Chaos and transformation theories: A theoretical analysis with implications for organization theory and public management. Public Organization, 3 (4), 339-372 December.
  11. Ferreira, M. A. M., Menezes, R. (1992), Equações com Diferenças – Aplicações em problemas de Finanças, Economia, Sociologia e Antropologia. Sílabo. Lisboa.
  12. Ferreira, M. A. M., Filipe, J. A. (2012), The ‘Drop of Honey Effect’. A Note on Chaos in Economics. International Journal of Latest Trends in Finance and Economic Sciences, 2 (4), 350-353.
  13. Ferreira, M. A. M., Filipe, J. A., Coelho, M., Pedro, M. I. (2010), Fishing Policies and the Contribution of Chaos Theory for Fisheries Management. International Conference on Technology and Business Management. Proceedings.
  14. Ferreira, M. A. M., Filipe, J. A., Coelho, M., Pedro, M. I. C. (2011), Chaos Effect in Fisheries Management. Journal of Economics and Engineering, 2 (1), 36-43.
  15. Ferreira, M. A. M., Filipe, J. A., Coelho, M., Pedro, M. I. C. (2011), Modelling the Dissipative Effect of Fisheries. China-USA Business Review, 10 (11), 1110-1114.
  16. Ferreira, M. A. M., Filipe, J. A., Coelho, M., Pedro, M. I. C. (2013), Managing Fisheries in Light of Complexity and Chaos Theories. In Banerjee, S. (2013), Chaos and Complexity Theory for Management: Nonlinear Dynamics, 270-282.
  17. Ferreira, M. A. M., Filipe, J. A., Coelho, M., Pedro, M. I. (2014), Chaos in World Politics: A Reflection The “Drop of Honey Effect”. In Banerjee, S., Erçetin, S. S., Tekin, A. (2014), Chaos Theory in Politics, 89-104.
  18. Filipe, J. A. (2006), O Drama dos Recursos Comuns. Um caso de aplicação da Teoria dos Jogos aos comuns da pesca. PhD thesis. Lisboa: ISCTE.
  19. Filipe, J. A., Coelho, M., Ferreira, M. A. M. (2005), Sistemas Dinâmicos, Caos e os Comuns da Pesca. Revista de Economia Global e Gestão. N.º 2/2005. Lisboa: ISCTE.
  20. Filipe, J. A., Ferreira, M. A. M., Coelho, M. (2007), O Drama dos Recursos Comuns nas Sociedades Actuais: à procura de soluções para os Ecossistemas em perigo. Edições Sílabo. Lisboa.
  21. Filipe, J. A., Ferreira, M. A. M., Coelho, M. (2008), The Relevance of Chaos Theory to Explain Problems of Overexploitation in Fisheries. Working Paper, WP/24/2008/DE/SOCIUS. ISEG. Lisboa.
  22. Filipe, J. A., Ferreira, M. A. M., Coelho, M., Pedro, M. I. C. (2009), Complexity, Theory of Chaos and Fishing. In Porath, D. and Bayer, A., “International Suplement” special “update”. FH Mainz, University of Applied Sciences. Mainz, Germany.
  23. Filipe, J. A., Ferreira, Coelho, M., Pedro, M. I. C., (2010), Chaos, Anti-chaos and Resources: Dealing with Complexity. Aplimat-Journal of Applied Mathematics, 3 (2), 83-90.
  24. Filipe, J. A., Ferreira, M. A. M., Coelho, M., Pedro, M. I. (2010), Managing Complexity: A Problem of Chaos in Fisheries Policy. China-USA Business Review. David Publishing Company, 9 (3).
  25. Filipe, J. A., Ferreira, M. A. M., Coelho, M., Pedro, M. I., Andrade, M. (2010), Analysing Fisheries Management through Complexity and Chaos Theories Framework, Journal of Mathematics and Technology, 1(2).
  26. Filipe, J. A., Ferreira, M. A. M. (2013), Chaos in humanities and social sciences: An approach. 12th Conference on Applied Mathematics, APLIMAT 2013, Proceedings. Bratislava, Slovakia.
  27. Galtung, J. (1975), Entropy and the general theory of peace. Peace: Research Education Action, Essays in Peace Research, 1, Copenhagen.
  28. Geyer, R. (2003), Europeanisation, Complexity, and the British Welfare State. Paper presented to the UACES/ESRC Study Group on The Europeanisation of British Politics and Policy-Making, Department of Politics, University of Sheffield, September 19, 2003.
  29. Grabinski, M. (2004), Is There Chaos in Management or Just Chaotic Management? Complex Systems, intelligence and Modern Technology Applications. Paris.
  30. Grabinski, M. (2008), Chaos – Limitation or Even End of Supply Chain Management. High Speed Flow of Material, Information and Capital. Istanbul.
  31. Hastings, A., Hom, C. L., Ellner, S., Turchin, P., Godfray, H. C. J. (1993), Chaos in Ecology: Is Mother Nature a Strange Attractor? Annual Review of Ecology and Systematics, 24 (1), 1-33.
  32. I Font, J. P. P., Régis, D. (2006), Chaos Theory and its Application in Political Science. (Draft), IPSA – AISP Congress, Fukuoka.
  33. I Font, J. P. P. (2014), In defence of Chaology in Political Science. PRISMA.COM n. º 26, 106-116.
  34. Kauffman, S. (1993), The origins of order: self-organization and selection in evolution. New York: Oxford Univ. Press.
  35. Lansing, J. S. (2003), Complex adaptive systems. Annual Review Anthro¬pology. http://www.ic.arizona.edu/lansing/GompAdSys.pdf.
  36. Lévêque, G. (2002), Ecologia: do ecossistema à biosfera. Lisboa: Instituto Piaget.
  37. Levin, S. (2003), Complex adaptive systems: exploring the known, the unknown and the unknowable. Bulletin of the American Mathematical Society, 40.
  38. Mangel, M., Clark, G. (1983), Uncertainty, search and information in fisheries. Journal du Conseil International pour L'Exploration de la Mer, 41.
  39. Maynard Smith, J. (1968), Mathematical Ideas in Biology. Cambridge: Cambridge University Press.
  40. Neher, P. (1990), Natural Resource Economics: Conservation and Exploita¬tion. Cambridge: Cambridge University Press.
  41. Olsen, L. F., Degn. H. (1985), Chaos in biological systems. Quarterly Review of Biophysics, 18 (2).
  42. Peled, A. (2000), The New Sciences, Self-organization and Democracy. Democratization, 7 (2), 19-35.
  43. Prigogine, I. (1993), Les Lois du chaos. Paris: Flammarion.
  44. Prigogine, I., Nicolis, G. (1989), Exploring complexity: an introduction. New York: W.H. Freeman and Company.
  45. Prigogine, I., Stenglers, I. (1984), Order out of chaos. Boulder (CO, USA): New Science Library.
  46. Radu, M. (2000), Festina Lente: United States and Cuba after Castro. What the experience in Eastern Europe suggests. Probable realities and recommendations, Studies in Comparative International Development, 34 (4), Winter.
  47. Rasband, N. S. (1990), Chaotic dynamics of nonlinear systems. New York: John Wiley.
  48. Scones, I. (1999), New ecology and the social sciences: what prospects for a fruitful engagement? Annual Review of Anthropology, 28, 479-507.
  49. Thrift, N. (2008), Non-Representational Theory, Routledge, New York, USA.
  50. Williams, G. P. (1997), Chaos Theory Tamed. Washington, D. C.: Joseph Henry Press.