Volume 2, Number 1 / February issue 2016
O.T. Omotoso
Activity of cellulase in the midgut homogenate of the palm weevil, Rhynchophorus phoenicis F. (Coleoptera: Curculionidae)

Palm weevil, Rhynchophorus phoenicis F is a key pest of palm trees and sugar cane in the tropics and subtropical regions of the world where it causes great economic losses. The midgut of the larva and adult stages of this insect are rich in digestive enzymes. Cellulase, being one of the most important carbohydrases was investigated in the midguts of the larva and adult stages of this insect using dinitrosalicylic acid reagent method. The optimum condition for cellulase bioassay in the midgut of the larva of R. phoenicis involved 2 ml of 1% starch, 2 ml of phosphate buffer (pH 4.0) and 1 ml of enzyme extract incubated at optimum temperature of 45o C were optimal for cellulase activity in both the larval and adult weevils. Michaelis-Menten constants (Km) of 2.5 mg/ml and 3.12 mg/ml were obtained for the larva and adult midgut cellulases respectively.
Keywords: Rhynchophorus phoenicis, Cellulase, enzyme extract, optimum, homogenate, dinitrosalicylic acid, buffer

Cite this article:
O.T. Omotoso. Activity of cellulase in the midgut homogenate of the palm weevil, Rhynchophorus phoenicis F. (Coleoptera: Curculionidae). Acta Scientiae et Intellectus, 2(1), 25-35.


  1. Beguin, P. and Aubert, J. B. (1994). The biological degradation of cellulose. FEMS Microbiology Review. 13: 25-58.
  2. Crudek, D. L. and Makkovftz, A. J. (1979). Carboxymethyl-cellulose decomposition by intestinal bacteria of cockroaches. Appl. Env. Mucrobiol. 38: 369-372.
  3. Davison, A. and Blaxter, M. (2005). Ancient origin of glycosyl hydrolase family 9 cellulase genes. Molecular Biology and Evolution. 22: 1273-1284.
  4. Delalibera, I., Handelsman, J. O. and Kenneth, F. R. (2005). Contrasts in cellulolytic activities of gut microorganisms between the Wood borer, Saperda vestita (Coleoptera: Cerambycidae), and the Bark beetles, Ips pini and Dendroctonus frontalis (Coleoptera: Curculionidae). Environmental Entomology. 34: 541-547.
  5. Giuliano, C., Asther, M. and Khan, A. W. (1983). Comparative degradation of cellulose and sugar formation by three newly isolated mesophilic anaerobes and Clostridium thermocellum. Biotechnology Letters. 5: 395-398.
  6. Giuliano, C. and Khan, A. W. (1984). Cellulase and sugar formation by Bacteroides cellulosolvens, a newly isolated cellulolytic anaerobe. Applied and Environmental Microbiology. 48: 446-448.
  7. Jianchu, M., Tianci, Y., Xiaogang, S. and Jiaan, C. (2004). Cellulase activity in five species of important termites in China. Applied Entomology and Zoology. 39: 635-641.
  8. Khan, A. W. and Murray, W. D. (1982). Single step conversion of cellulose to ethanol by a mesophilic coculture. Biotechnology Letters. 4: 177-180.
  9. Li, Z. Q., Liu, B. R., Zeng, W. H., Xiao, W. L., Li, Q. J., Zhong, J. H. (2013). Character of cellulase activity in the guts of flagellate-free termites with different feeding habits. Journal of Insect Science 13(37): 1-7.
  10. Linton, S. M. and Greenway, P. (2004). Presence and properties of cellulose and hemicellulase enzymes of the gecarcinid land crabs, Gecarcoidea natalis and Discoplax hirtipes. Journal of Experimental Biology. 207: 4095-4104.
  11. Linton, S. M. and Greenway, P. and Towle, D. W. (2006). Endogenous production 1, 4-glucanase by decapod crustaceans. Journal of Comparative Physiology B. 176: 339-348.
  12. Maglione, M., Russell, J. B. and Wilson, D. B. (1997). Kinetics of cellulose digestion by Fibrobacter succinogenes S85. Applied and Environmental Microbiology. 63: 665-669.
  13. Martin, M. M. (1983). Cellulose digestion in insects. Physiology. 75: 313-324.
  14. Martin, M. M. (1991). The evolution of cellulose digestion in insects. JSTOR. 333: 281-287.
  15. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for the determination of reducing sugars. Analytical Chemistry. 31: 426-428.
  16. Omotoso, O.T. (2009). Nutritive value and aspects of digestive physiology of the palm weevil, Rhynchophorus phoenicis F. (Coleoptera: Curculionidae). Ph.D Thesis. Federal University of Technology Akure, 182p.
  17. Omotoso, O.T. and Adedire, C.O. (2011). Amylase Activity in the Midgut Homogenate of the Palm Weevil, Rhynchophorus phoenicis F. (Coleoptera: Curculionidae). Journal of Agriculture and Biological Sciences. 2(1): 13-16.
  18. Oppert, C., Klingeman, W.E., Willis, J.D., Oppert, B., Jurat-Fuentes, J.L., (2010). Prospecting for cellulolytic activity in insect digestive fluids. Comp. Biochem. Physiol. B 155: 145–154.
  19. Rashid War, A., Paulraj, M.G., Hussain, B., Ahmad, T., Yousf War, M. and Ignacimuthu, S. (2014). Efficacy of a Combined Treatment of Neem Oil formulation and Endosulfan against Helicoverpa armigera (Hub.) (Lepidoptera: Noctuidae). International Journal of Insect Science. 6: 1–7.
  20. Sami, A. J. and Shakoori, A. R. (2006). Heterogeneity in cellulases of some of the local Agricultural Insect Pests. Pakistan J. Zool. 38(4): 337-340.
  21. Sami, A. J., Awais, M. and Shakoori, A. R. (2008). Preliminary studies on the production of endo-1,4-β-D glucanases activity produced by Enterobacter cloacae. African Journal of Biotechnology. 7: 1318-1322.
  22. Shelomi, M., Watanabe, H., and Arakawa, G. (2014). Endogenous cellulase enzymes in the stick insect (Phasmatodea) gut. Journal of Insect Physiology. 60: 25–30.
  23. Sheehan, J. J. (1994). Enzymatic conversion of biomass for fuels production. Himmel, M. E., Baker, J. O. and Overend, R. P. edt., American Chemical Society, Washington, Dc, pp. 1-52.
  24. Sree, N. K., Williams, M., Sureh, K., Banat, I. M. and Rao, L. V. (2000). High alcohol production by repeated batch fermentation using an immobilized osmotolerant Saccaromyces cerevisiae. Journal of Industrial Microbiology. 24: 222-226.
  25. Su, L. J., Zhang, H. F., Yin, Z. M., Chen, M., Wang, F. Q., Xie, H., Zhang, G. Z., and Song, A. D. (2013). Evaluation of cellulolytic activity in insect digestive fluids. Genetics and Molecular Research 12(3): 2432-2441.
  26. Sugimura, M., Watanabe, H., Lo, N. and Saito, H. (2003). Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. European Journal of Biochemistry. 270: 3455-3460.
  27. Tokuda, G., Lo, N., Watanabe, H., Arakawa, G., Matsumoto, T., Noda, H., (2004). Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Mol. Ecology. 13: 3219–3228.
  28. Tokuda, G., Lo, N., Watanabe, H., (2005). Marked variations in patterns of cellulose activity against crystalline-vs. carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. Physiol. Entomol. 30: 372–380.
  29. Tokuda, G., Watanabe, H., Hojo, M., Fujita, A., Makiya, H., Miyagi, M., Arakawa, G., Arioka, M., (2012). Cellulolytic environment in the midgut of the wood-feeding higher termite Nasutitermes takasagoensis. J. Insect Physiol. 58: 147–154.
  30. Tomme, P., Warren, R. A. and Gilkes, N. R. (1995). Cellulose hydrolysis by bacteria and fungi. Advanced Microbiology and Physiology. 37: 1-81.
  31. Watanabe, H. and Tokuda, G. (2001). Animal cellulases. Cellular and Molecular Life Sciences. 58: 1167-1178.
  32. Watanabe, H. and Tokuda, G. (2010). Cellulolytic systems in insects. Annu. Rev. Entomology. 55: 609–632.
  33. Weimer, P. J. (1992). Cellulose degradation by ruminal microorganisms. Critical Review in Biotechnology. 12: 189-223.
  34. Zhu, B. C. R., Henderson, G. and Laine, R. A. (2005). Screening method for inhibitors against Formosan subterranean Termite β-Glucosidases In vivo. Journal of Economic Entomology. 98: 41-46.
  35. Zimmer, M. and Topp, W. (1998). Microorganisms and cellulose digestion in the gut of the woodlouse, Porcellio scaber. Journal of Chemical Ecology. 24: 1397-1408.