Archive

Volume 1, Number 1 / June issue 2015
Manuel Alberto M. Ferreira
The minimax theorem as Hahn-Banach theorem consequence
Abstract

The separation concept is essential in convex programming. In particular, the convex sets separation. In this work the Hahn-Banach theorem is presented, with great generality, together with an important separation theorem, its consequence. Then are followed the necessary mathematical steps towards the minimax theorem, an important result in the applications of Game Theory to economics, finance and management.
Keywords: Hahn-Banach theorem, separation theorems, convex programming, minimax theorem

Cite this article:
Manuel Alberto M. Ferreira. The minimax theorem as Hahn-Banach theorem consequence. Acta Scientiae et Intellectus, 1(1), 58-66.


REFERENCES

  1. J.P. Aubin. Applied Functional Analysis. John Wiley & Sons Inc., New York, 1979.
  2. A.V. Balakrishnan. Applied Functional Analysis. Springer-Verlag New York Inc., New York, 1981.
  3. H. Brézis. Analyse Fonctionelle (Théorie et Applications). Masson, Paris, 1983.
  4. M.A.M. Ferreira. Aplicação dos Teoremas de Separação na Programação Convexa em Espaços de Hilbert. Revista de Gestão, I (2), 41-44, 1986.
  5. M.A.M. Ferreira. The Hahn-Banach Theorem in Convex Programming. APLIMAT 2015-14th Conference on Applied Mathematics, Proceedings, 283-291. Bratislava; Slovakia; 3 February 2015 through 5 February 2015.
  6. M.A.M. Ferreira, M. Andrade and M. C. Matos. Separation Theorems in Hilbert Spaces Convex Programming. Journal of Mathematics and Technology, 1 (5), 20-27, 2010.
  7. M.A.M. Ferreira and M. Andrade. Management Optimization Problems. International Journal of Academic Research, Vol. 3 (2, Part III), 647-654, 2011.
  8. M.A.M. Ferreira and M. Andrade. Hahn-Banach Theorem for Normed Spaces. International Journal of Academic Research, 3 (4, Part I), 13-16, 2011.
  9. M.A.M. Ferreira M and Andrade. Riesz Representation Theorem in Hilbert Spaces Separation Theorems. International Journal of Academic Research, 3 (6, II Part), 302-304, 2011.
  10. M.A.M. Ferreira and M. Andrade. Separation of a Vector Space Convex Parts. International Journal of Academic Research, 4 (2), 5-8, 2012.
  11. M.A.M. Ferreira and M. Andrade. The Hahn-Banach Theorem and the Separation of a Vector Space Convex Parts. Journal of Mathematics and Technology, 4 (1), 5-15, 2013.
  12. M.A.M. Ferreira, M. Andrade and J. A. Filipe. Kuhn-Tucker’s Theorem for inequalities in Infinite Dimension. Journal of Mathematics and Technology, 3 (1), 57-60, 2012.
  13. M.A.M. Ferreira, M. Andrade and J. A. Filipe. Weak Convergence in Hilbert Spaces. International Journal of Academic Research, 4 (4), 34-36, 2012.
  14. M.A.M. Ferreira, M. Andrade, M. C. Matos, J. A. Filipe and M. Coelho. Minimax Theorem and Nash Equilibrium. International Journal of Latest Trends in Finance & Economic Sciences, 2(1), 36-40, 2012.
  15. S. Kakutani. A Generalization of Brouwer’s Fixed Point Theorem. Duke Mathematics Journal, 8, 1941.
  16. L.V. Kantorovich and G. P. Akilov. Functional Analysis. Pergamon Press, Oxford, 1982.
  17. A.N. Kolmogorov and S. V. Fomin. Elementos da Teoria das Funções e de Análise Funcional. Editora Mir, 1982.
  18. M.C. Matos and M.A.M. Ferreira. Game Representation -Code Form. Lecture Notes in Economics and Mathematical Systems; 567, 321-334, 2006.
  19. M.C. Matos, M.A.M. Ferreira and M. Andrade. Code Form Game. International Journal of Academic Research, 2(1), 135-141, 2010.
  20. M.C. Matos, M.A.M. Ferreira, J.A. Filipe and M. Coelho. Prisonner`s Dilemma: Cooperation or Treason. PJQM-Portuguese Journal of Quantitative Methods, Vol. 1(1), 43-52, 2010.
  21. J. Nash. Non-Cooperative Games. Annals of Mathematics, 54, 1951.
  22. J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton University Press, Princeton, New Jersey, 1947.
  23. J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. John Wiley & Sons Inc., New York, 1967.