Archive

Volume 4, Number 3 / June issue 2018
Jenna Gorman
Cognitive rehabilitation therapy: What is it and why are we not utilizing it?
Abstract

In this article it is shown that if the busy period of a M|G|∞ queue system is PME distributed, the respective service time is a random variable with a long-tail distribution. The result is obtained through Laplace transforms analysis.
Keywords: M|G|∞, busy period, PME distribution, long-tail distribution, Laplace transform

Cite this article:
Jenna Gorman. Cognitive rehabilitation therapy: What is it and why are we not utilizing it?. Acta Scientiae et Intellectus, 4(3)2018, 15-20.


REFERENCES

  1. Abate, J., Choudhury, G. L., Whitt, W. (1994). Waiting-time tail probabilities in queues with long-tail service-time distributions. Queueing systems, 16, 311-338, 1994.
  2. Andrade, M. (2010). A note on foundations of probability. Journal of Mathematics and Technology, 1(1), 96-98.
  3. Carrillo, M.J. (1991). Extensions of Palm’s theorem: a review. Management Science, 37(6), 739-744.
  4. Ferreira, M.A.M. (1994). Simulação de variáveis aleatórias-método de Monte Carlo. Revista Portuguesa de Gestão, I (III/IV), 119-127. ISCTE.
  5. Ferreira, M.A.M. (1998). Application of Ricatti equation to the busy period study of the M|G∞ system. Statistical Review, 1st Quadrimester, INE, 23-28.
  6. Ferreira, M.A.M. (1998a). Computational simulation of infinite servers systems. Statistical Review, 3rd Quadrimester, INE, 23-28.
  7. Ferreira M.A.M. (2001). M|G∞ queue heavy-traffic situation busy period length distribution (power and Pareto service distributions). Statistical Review, 1st Quadrimester, INE, 27-36.
  8. Ferreira, M.A.M. (2002). The exponentiality of the M|G∞ queue busy period. Actas das XII Jornadas Luso-Espanholas de Gestão Científica, Volume VIII-Economia da Empresa e Matemática Aplicada. UBI, Covilhã, Portugal, 267-272.
  9. Ferreira M.A.M. (2005). Differential equations important in the M|G∞ queue system transient behavior and busy period study. Proceedings of 4th International Conference APLIMAT 2005, Bratislava, Slovakia, 119-132.
  10. Ferreira, M.A.M. (2015). A differential equation occurring in the M/M/∞ queue parameters study using a Markov renewal process. Acta Scientia et Intellectus, 1(2), 10-15.
  11. Ferreira, M.A.M. (2015), “The M/G/∞ Queue Busy Period Length Exponential Behavior for Particular Service Times Distributions Collection“. Acta Scientia et Intellectus, 1(3), 14-18.
  12. Ferreira, M.A.M. (2016). Some achievements from a statistical queuing theory research. Acta Scientiae et Intellectus, 2(1), 70-83.
  13. Ferreira, M.A.M., Andrade, M. (2009). The ties between the M|G∞ queue system transient behavior and the busy period. International Journal of Academic Research, 1(1), 84-92.
  14. Ferreira, M.A.M., Andrade, M. (2010). Looking to a M|G∞ system occupation through a Ricatti equation. Journal of Mathematics and Technology, 1(2), 58-62.
  15. Ferreira, M.A.M., Andrade, M. (2010a). M|G∞ queue busy period tail. Journal of Mathematics and Technology, 1(3), 11-16.
  16. Ferreira, M.A.M., Andrade, M. (2010b). M|G∞ system transient behavior with time origin at the beginning of a busy period mean and variance. APLIMAT-Journal of Applied Mathematics, 3(3), 213-221.
  17. Ferreira, M.A.M., Andrade, M. (2011). Fundaments of theory of queues. International Journal of Academic Research, 3(1), part II, 427-429.
  18. Ferreira, M.A.M., Andrade, M. (2012). Infinite servers queue systems busy period length moments. Journal of Mathematics and Technology, 3(2), 5-9.
  19. Ferreira, M.A.M., Andrade, M. (2012a). Busy period and busy cycle distributions and parameters for a particular M|G∞ queue system. American Journal of Mathematics and Statistics, 2(2), 10-15.
  20. Ferreira, M.A.M., Andrade, M. (2012b). Queue networks models with more general arrival rates. International Journal of Academic Research, 4(1), part A, 5-11.
  21. Ferreira, M.A.M., Andrade, M. (2012c). Transient behavior of the m and M|G∞ system. International Journal of Academic Research, 4(3), part A, 24-33.
  22. Ferreira, M.A.M., Andrade, M., Filipe, J. A. (2008). The Ricatti equation in the MG busy cycle study. Journal of Mathematics, Statistics and Allied Fields, 2 (1).
  23. Ferreira, M.A.M., Andrade, M., Filipe, J.A. (2009). Networks of queues with infinite servers in each node applied to the management of a two echelons repair system. China-USA Business Review, 8 (8), 39-45 and 62.
  24. Ferreira, M.A.M., Andrade, M., Filipe, J. A. (2012). The age or excess of the M|G∞ queue busy cycle mean value. Computer and Information Science, 5(5), 93-97.
  25. Ferreira, M.A.M., Ramalhoto, M.F. (1994). Estudo dos parâmetros básicos do período de ocupação da fila de espera M|G∞. A Estatística e o Futuro e o Futuro da Estatística. Actas do I Congresso Anual da S.P.E., Edições Salamandra, Lisboa.
  26. Figueira, J., Ferreira M.A.M. (1999). Representation of a pensions fund by a stochastic network with two nodes: an exercise. Portuguese Revue of Financial Markets, 1(3).
  27. Hershey, J.C., Weiss, E.N., Morris A. C. (1981). A stochastic service network model with application to hospital facilities. Operations Research, 29(1), 1-22.
  28. Kelly, F.P. (1979). Reversibility and stochastic networks. John Wiley and Sons, New York.
  29. Kendall, M.G. and Stuart, A. (1979). The advanced theory of statistics. Distributions theory. London, Charles Griffin and Co., Ltd. 4th Edition.
  30. Kleinrock, L. (1985). Queueing systems. Vol. I and Vol. II. Wiley, New York.
  31. Metropolis, N., Ulan, S. (1949). The Monte Carlo method. Journal of American Statistical Association, 44(247), 335-341.
  32. Murteira, B. (1979). Probabilidades e Estatística. Vol. I. Editora McGraw-Hill de Portugal, Lda., Lisboa.
  33. Ramalhoto, M. F. (1983). A note on the variance of the busy period of the M|G∞ systems. Centro de Estatística e Aplicações, CEAUL, do INIC and IST.
  34. Ramalhoto, M.F., Ferreira, M.A.M. (1996). Some further properties of the busy period of an M|G∞ queue. Central European Journal of Operations Research and Economics, 4(4), 251-278.
  35. Stadje, W. (1985).The busy period of the queueing system M|G∞. Journal of Applied Probability, 22, 697-704.
  36. Syski., R (1960). Introduction to congestion theory in telephone systems. Oliver and Boyd- London.
  37. Syski, R. (1986). Introduction to congestion theory in telephone systems. North Holland, Amsterdam.
  38. Tackács, L. (1962). An introduction to queueing theory. Oxford University Press, New York.